

UnicView AD v1.6.0
Development Guide

1.1

Proculus Technologies Limited

2/19/2019

 2 of 93 Development Guide 1.1

 3 of 93 Development Guide 1.1

Proculus Technologies Limited provides this document to its customers with a product purchase to use in the
product operation. This document is copyright protected and any reproduction of the whole or any part of this
document is strictly prohibited, except with the written authorization of Proculus Technologies Limited.

The contents of this document are subject to change without notice. All technical information in this document
is for reference purposes only. System configurations and specifications in this document supersede all previous
information received by the purchaser.

Proculus Technologies Limited makes no representations that this document is complete, accurate or error-free
and assumes no responsibility and will not be liable for any errors, omissions, damage or loss that might result
from any use of this document, even if the information in the document is followed properly.

This document is not part of any sales contract between Proculus Technologies Limited and a purchaser. This
document shall in no way govern or modify any Terms and Conditions of Sale, which Terms and Conditions of
Sale shall govern all conflicting information between the two documents.

For Research Use Only. Not for use in diagnostic procedures.

PATENT PENDING

Introduction - Document Overview

 4 of 93 Development Guide 1.1

Contents

1 INTRODUCTION ... 7

1.1 Document Overview .. 7

1.2 Conventions Used in this Document ... 7

1.2.1 Notations ... 7

1.2.2 Information, Caution and Warning Statements .. 8

2 AD FIRMWARE OVERVIEW .. 9

3 HARDWARE ... 10

3.1 LCD ... 10

3.2 Touch Panel ... 11

3.3 RTC ... 11

3.4 Buzzer .. 11

3.5 Audio Output ... 11

3.6 USB Connectors ... 11

3.7 Power ... 12

3.8 Serial Communication ... 12

4 AD FIRMWARE STRUCTURE .. 13

4.1 Color System .. 13

4.2 Touch Panel Calibration ... 13

4.3 Processing Core Operation .. 13

4.4 Memory Spaces ... 14

4.4.1 System Configuration Space .. 14

4.4.2 Register Space ... 15

4.4.3 RAM Space (VP and PP) ... 16

4.4.4 FLASH Space ... 17

4.4.5 Trend Curve Buffer Space .. 19

4.5 File Structure ... 22

5 SYSTEM CONFIGURATION (LCM CONFIGURATION) ... 23

5.1 Frame Header (R3, RA) .. 23

5.2 Baud rate (R1, R5, 59) .. 23

5.3 Configuration 1 (R2) .. 24

5.4 Screen Rotation (R4) .. 25

5.5 Configuration 2 RC ... 25

Introduction - Document Overview

 5 of 93 Development Guide 1.1

5.6 Backlight Automatic Control (R6, R7, R8) .. 26

5.7 Initial Screen (RD, RE) .. 26

6 CONTROL REGISTERS .. 27

6.1 Control Register Table ... 28

6.2 Software Control Activation .. 31

6.3 Audio Reproduction ... 31

6.4 Video Reproduction ... 32

6.5 Touch Panel Calibration ... 33

6.6 Configuration Registers Overwriting ... 34

6.7 RTC Reading and Adjustment .. 34

6.8 Trend Curve Buffer Clearing .. 35

7 SERIAL COMMUNICATION PROTOCOL ... 36

7.1 Introduction ... 36

7.2 Control Register Commands .. 37

7.2.1 Write Registers (0x80) ... 37

7.2.2 Read Registers (0x81) .. 38

7.3 VP (RAM) Commands .. 40

7.3.1 Write VPs (0x82) .. 40

7.3.2 Read VPs (0x83) ... 41

7.4 Trend Curve Buffer Commands ... 43

7.4.1 Write Trend Curve Buffer (0x84) ... 43

7.4.2 Curve Clearing .. 44

7.5 CRC ... 45

8 INTERFACE OBJECTS .. 48

8.1 VP and PP Distribution ... 48

8.2 Controls ... 51

8.2.1 Basic Touch .. 52

8.2.2 Set Value .. 53

8.2.3 Touch Status .. 54

8.2.4 Numeric Input .. 56

8.2.5 Text Input ... 58

8.2.6 Incremental Input .. 60

8.2.7 Slider Input .. 61

8.2.8 RTC Input ... 62

8.2.9 Popup ... 63

8.3 Display Variables .. 64

Introduction - Document Overview

 6 of 93 Development Guide 1.1

8.3.1 Dynamic Icon ... 65

8.3.2 Animated Icon ... 66

8.3.3 Slider Display ... 67

8.3.4 Rotating Icon .. 69

8.3.5 Bitwise Icon .. 71

8.3.6 Numeric Art ... 73

8.3.7 Numeric Display ... 74

8.3.8 Text Display .. 75

8.3.9 Image Animation ... 76

8.3.10 Hex Display .. 77

8.3.11 RTC Display .. 78

8.3.12 Analog Clock .. 79

8.3.13 Table Display .. 80

8.3.14 Trend Curve Display ... 83

8.3.15 Graphic Primitives Display (GPD) ... 84

8.3.16 QR Code Display .. 88

9 AD ASSEMBLY.. 89

10 MODBUS ... 90

10.1 Master ... 90

10.2 Slave ... 92

Introduction - Document Overview

 7 of 93 Development Guide 1.1

1 Introduction
This section contains important information on how to read this document.

1.1 Document Overview
This document provides a general overview of AD firmware for Proculus LCMs, its features and utilities,
instructions on how to use it, and descriptions of all functionalities. It assumes the user has basic prior knowledge
about microcontroller or computer programming and binary and hexadecimal numeric representations.

If you are a new user of AD LCMs, we recommend reading this document sequentially, from start to end.
However, this document’s sections are structured to be used as a reference guide, where you can look for
specific information on each subject quickly.

1.2 Conventions Used in this Document
This section presents the textual conventions and notations used in this document. Knowing these conventions
will make it easier to read this document.

1.2.1 Notations

Notation Description Examples

(button+…),
([button/button])

Keyboard or Mouse button or button
combination. Buttons inside square
brackets represent multiple options.

(CTRL+A) = Control + A
(ALT+LMB) = Alt + Left Mouse Button
(ESC) = Escape
(SHIFT+[UP/DOWN]) = (SHIFT+UP) or
(SHIFT+DOWN)

0x0000 Number in hexadecimal notation.
The number of digit pairs indicates
the number of bytes considered.

0x0064, 0x01

0b00000000 Number in binary notation. 0b01001011, 0b11110000

(0,0), [0,0] In value range context – represents
a range of values. Rounded brackets
symbols indicate the value is not
included in the range, and square
brackets indicate the value is
included in the range.

(0,3) = Range from 1 to 2.
[0,3) = Range from 0 to 2.
(0,3] = Range from 1 to 3.
[0,3] = Range from 0 to 3.

(0,0) In coordinates context – represents
a pair of values, usually coordinates.

(23, 172) – Coordinates on the LCM
screen.

“X - Section Title” Link to a section of this document. Section “1.2 - Conventions Used in this
Document”.

Section Title Link to a section of this document. Insert a Basic Touch.

<FieldName>FixedText Represents variable and fixed text
fields.

<FileName>_AD.bin = could be
Controls_AD.bin, Images_AD.bin,
System_AD.bin, etc.

LCM Family

This document applies only to the V Family of Proculus LCMs.

Introduction - Conventions Used in this Document

 8 of 93 Development Guide 1.1

1.2.2 Information, Caution and Warning Statements
This document may contain Information, Caution and Warning statements.

Info This is an Information statement. It draws attention to certain key aspects about the
current topic.

Caution This is a Caution statement. It describes a situation that could potentially damage your
software, equipment or cause data loss.

Warning This is a Warning statement. It describes a situation that could potentially cause harm
or injury to you.

The information in Caution and Warning statements is provided for your protection. Read each Caution and
Warning statement carefully.

AD Firmware Overview - Conventions Used in this Document

 9 of 93 Development Guide 1.1

2 AD Firmware Overview
The AD (Advanced Design) firmware for Proculus LCMs is the main solution for Graphical User Interface (GUI)
design. It provides a comprehensive collection of tools that makes the process of creating and integrating a GUI
in an application very quick and easy.

AD firmware communicates with external devices through a simple 5-Command serial protocol. It also has
Modbus Protocol-ready variants, to enable Modbus RTU Master or Slave communication.

There’s also a basic version of AD firmware, called MiniAD. Some functionalities from AD are removed from
MiniAD firmwares, making it adequate for some niche applications of Proculus LCMs.

This documentation primarily addresses the standard AD firmware, and some information may not be applicable
to MiniAD firmwares. While differences between AD and MiniAD are often pointed out in the relevant sections,
if you’re using a MiniAD firmware, please consult the “UnicView MiniAD Development Guide” document for
complete details.

Info Refer to the “UnicView MiniAD Development Guide” document for a complete
description of the differences between AD and MiniAD firmwares.

Hardware - LCD

 10 of 93 Development Guide 1.1

3 Hardware
This section describes the hardware (physical) components of a Proculus Liquid Crystal Module (Proculus LCM).

The LCM is composed of three main components:

• Screen and Touch Panel

• Processing Core

• Control PCB (Printed Circuit Board)

The Screen and Touch Panel are the user interaction medium. They are the actual Human-Machine interface
elements. The Screen is a LCD display covered by a glass layer, which has a Touch Panel attached to it.

The Processing Core is the central controller, responsible for all the graphical processing and control of all
peripherals. The AD firmware runs on the Core.

The Control PCB is the attachment surface for the Screen and the Core. It’s also where all the peripherals (RTC,
battery holder, Serial Port connectors, etc.) are located.

3.1 LCD
The screen of a LCM is a Thin Film Transistor Liquid Cristal Display (TFT LCD). Its light source is a Light Emitting
Diode (LED) strip, positioned right behind the display itself. This LED strip is referred to as backlight. The backlight
brightness can be adjusted for greater or smaller light levels.

Different LCM models may have different maximum brightness specifications.

Hardware - Touch Panel

 11 of 93 Development Guide 1.1

3.2 Touch Panel
All Proculus LCMs have touch-screen capabilities. There are three available options:

• No Touch Panel: For when there’s no need for user direct interaction, and a brighter screen is desirable.

• Resistive Touch Panel: Most common option. Offers great sensitivity, while being very stress-resistant.
Works with gloves, oily or wet skin, and dirt. Single touch point.

• Capacitive Touch Panel: Offers exceptional sensitivity. Higher screen brightness than Resistive. Slightly
less stress-resistant. Doesn’t work with gloves or wet skin. Capable of five touch points.

3.3 RTC
The built-in Real Time Clock (RTC) provides the ability to display time and date on the LCM without the need for
external components.

It has a typical drift of about ±1 second per month.

The RTC requires a battery to retain its value when the LCM is powered-down.

3.4 Buzzer
The built-in buzzer provides audible feedback for the user when they touch a button on the Screen. It has fixed
frequency and volume.

The automatic sound feedback can be turned off.

The buzzer can also be activated by Serial Communication.

3.5 Audio Output
Some LCM models have an audio output connector for speakers, to play audio files stored in memory.

3.6 USB Connectors
Proculus LCMs (V Family) have both a USB Type A and a USB Mini-B connector. Their functions are:

USB Mini-B

• Project download via USB cable connected to a host PC running UnicView AD software.

• Doesn’t supply power to the LCM.

USB Type-A

• Firmware upgrading and project download via USB Flash drives.

• Doesn’t supply power to the LCM.

Info For additional information on the physical interface of Proculus LCMs, please refer to
the “Proculus UnicView AD LCMs Connection Guide” document.

Hardware - Power

 12 of 93 Development Guide 1.1

3.7 Power
Depending on the LCM model, it may have a built-in voltage regulating system, which grants a wide supply
voltage range. On models that don’t have regulated supply inputs, the LCM usually accepts a narrower voltage
range.

If not enough power is supplied, the LCM won’t start, or will flicker (repeatedly turn on then turn off).

3.8 Serial Communication
All Proculus LCMs have one or more connectors for Serial Communication with external controllers. The
supported electrical protocols are:

• TTL/CMOS: 0V/3.3V, compatible with 0V/5V devices.

• RS232: Compliant up to -15V/15V.

• RS485: Compliant up to -6V/+6V.

The Serial Port operates at baud rates up to 892900 bps, within a frequency tolerance of ±2%

The packet format is 8N1 (8 data bits, no parity check, 1 stop bit).

AD Firmware Structure - Color System

 13 of 93 Development Guide 1.1

4 AD Firmware Structure

4.1 Color System
Most Proculus LCMs use a 16-bit color palette. Colors are coded in the RGB565 format, with 5 bits for the RED
channel, 6 bits for the GREEN channel, and 5 bits for the BLUE channel.

Accepted file format: JPEG, any color specifications, same resolution as the target LCM.

Info For best results, use RGB565 color palettes on your graphical design software.

4.2 Touch Panel Calibration
To enter the Touch Panel calibration routine, send the appropriate Serial Command (see sections 6.5 - Touch
Panel Calibration and 7.2.1 - Write Registers (0x80) for details).

Touch the three (or five, depending on the LCM Configuration) crosses that will appear on the screen. After the
calibration routine is complete, the LCM is reset.

4.3 Processing Core Operation
The AD firmware operates in a cyclic fashion, much like PLCs (Programable Logic Controllers). The binary code
of a UnicView AD project is written into the Core memory, and is executed repeatedly in Operation Cycles.

The Operation Cycle Period is the amount of time that the Core has to execute all of its instructions, and
influences the update frequency of the interface. Smaller Operation Cycle Periods increase the perceived
“speed” of the interface., while longer Operation Cycles tend to produce a “slower” looking response.

At the end of each Operation Cycle, the screen is refreshed, updating its graphics.

AD Firmware Structure - Memory Spaces

 14 of 93 Development Guide 1.1

4.4 Memory Spaces
AD LCMs have several memory addressing spaces, each with a specific purpose. This section describes each
memory space.

4.4.1 System Configuration Space
The System Configuration space stores basic configuration settings, which determine how the LCM operates.

Characteristics:

• Non-volatile.

• Addressing: 8-bit.

• Address range: [0x00,0x0C] (AD), [0x00,0x0B] (MiniAD).

• Data length: 8-bit.

Each address is referred to as a Configuration Register, and is designated as R# (R0, R1, and so on).

This space is usually modified by the CONFIG.txt file, but can be edited via Serial Communication.

Info More details in section “5 - System Configuration (LCM Configuration)”.

AD Firmware Structure - Memory Spaces

 15 of 93 Development Guide 1.1

4.4.2 Register Space
The Control Register space stores run-time configuration settings, and is also used to trigger special procedures,
like database access and RTC adjustment.

Characteristics:

• Volatile.

• Addressing: 8-bit.

• Address range: [0x00,0xFF].

• Data length: 8-bit.

This space is usually accessed via Serial Communication.

Info More details in section “6 - Control Registers”.

AD Firmware Structure - Memory Spaces

 16 of 93 Development Guide 1.1

4.4.3 RAM Space (VP and PP)
The RAM space, also called VP space, stores all application and user variable data used by Interface Objects. This
is the main data space accessed by external controllers.

Each address is referred to as Variable Pointer (VP), and the actual data stored in each VP is called Variable
Pointer Content (VPC), usually denoted in C-Language-Style syntax: *VP.

Parameter Pointer (PP) is the denomination of a VP used to store run-time modifiable parameters of Display
Variables.

Characteristics:

• Volatile.

• Addressing: 16-bit.

• Address range: [0x0000,0x6FFF] (AD), [0x0000,0x07FF] (MiniAD).

• Data length: 16-bit.

AD Firmware Structure - Memory Spaces

 17 of 93 Development Guide 1.1

4.4.4 FLASH Space
The FLASH space stores Icon Libraries, Font Libraries and Configuration Files.

Characteristics:

• Non-volatile.

• Divided into 127 indexes (LibIds), with 256 kB each.

• Addressing (per LibId): 32-bit.

• Address range (per LibId): [0x00000000,0x0001FFFF].

• Data length: 16-bit.

This space is divided into 127 sub-spaces, each designated by a Library Index, or LibId. All Configuration files,
Icon and Font Libraries and other standard files are allocated to an individual LibId.

Info If a file occupies more than 256 kB, it will extend to adjacent LibIds, occupying them.

AD Firmware Structure - Memory Spaces

 18 of 93 Development Guide 1.1

The following table describes the distribution of the FLASH memory, according to file type.

AD Firmware Structure - Memory Spaces

 19 of 93 Development Guide 1.1

4.4.5 Trend Curve Buffer Space
This is a volatile memory, composed of 8 curve buffer channels. Each channel functions as a FIFO (First-In,
First-Out) buffer, that holds the data to be plotted on Trend Curve Displays. Data is 16-bit signed Integer.

When data is written on a channel, usually via Serial Commands, all visible Trend Curve Displays allocated to
that channel will update their plots, showing the data from latest to oldest, right to left. Only the most recent
data is shown.

The curves are line graphs, with constant spacing on the X axis.

Info For MiniAD, only 2 curve channels are available.

Consider an empty curve buffer, on channel 0, for instance, and a Trend Curve Display.

Initially, the plot is empty. As data is written in the buffer, the plot is continuously updated.

When the plot reaches the right end of the plot area, the plot starts to “move” to the left, making room for new
data points.

AD Firmware Structure - Memory Spaces

 20 of 93 Development Guide 1.1

By using multiple Trend Curve Displays, you can show superimposed plots. As the curve buffers are independent
from each other, the data doesn’t need to be aligned.

The curve buffer channels are numbered from 0 to 7, and are addressed in a one-hot encoding:

Channel Binary Hexadecimal

0 00000001 0x01

1 00000010 0x02

2 00000100 0x04

3 00001000 0x08

4 00010000 0x10

5 00100000 0x20

6 01000000 0x40

7 10000000 0x80

To clear a curve buffer channel, write (0x56 + Channel) in the Control Register 0xEB. Write 0x55 to clear all
channels.

Examples:

• 0x56: Clear channel 0.

• 0x57: Clear channel 1.

• 0x5D: Clear channel 7.

• 0x55: Clear all channels.

1 2 1 7 3 ← C0

4 3 2 1 2 ← C1

9 6 7 5 ← C2

5 5 4 ← C3

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

AD Firmware Structure - Memory Spaces

 21 of 93 Development Guide 1.1

Info When using MiniAD, write 0x5A to clear channel 0, and 0x5B to clear channel 1.

Info Refer to section “7.4 - Trend Curve Buffer” for more information on how to write into
the Trend Curve Buffers.

Info Refer to section “6 - Control Registers” for more information on Control Registers

AD Firmware Structure - File Structure

 22 of 93 Development Guide 1.1

4.5 File Structure
The following table describes the file types and naming rules accepted by the AD firmware.

File Type Naming Rule Example Description

Pictures PicId.jpg 0.jpg JPEG file, with the same resolution as the target LCM.

Fonts LibId.dzk 32.dzk Custom Font Libraries, generated on UnicView AD.

Icon Libraries LibId.ICO 41. ICO Icon Libraries, generated on UnicView AD.

Default Font Library 0.hzk - Default Font Library, built-in on UnicView AD.

Audio AudioId.wav 0.wav WAV file, 32KHz, 16-bit, Mono.

QR Code Library 12.bin Contains the codification for QR Code.

Control and Display Variable
Configuration, RAM Initialization

UnicViewAD.bin - Controls Configuration File. Contains all information
regarding the Controls and Display Variables on each
Screen. Also contains the data that is loaded into the VP
Space of the LCM on power-up.

AD Assembly 23.BIN - AD Assembly Binary File.

System Configuration (LCM Settings) CONFIG.txt - LCM Basic Configuration Options.

System Configuration (LCM Configuration) - Frame Header (R3, RA)

 23 of 93 Development Guide 1.1

5 System Configuration (LCM Configuration)
The System Configuration is a set of registers that control several aspects of the LCMs operation.

Each Configuration Register stores an 8-bit value, and they must be written to a text file, named “CONFIG.txt”.
Only one Configuration Register is allowed by line. You can insert comments after a semicolon “;” character.

Example of System Configuration file, generated by UnicView AD software:

Caution Avoid manually writing the CONFIG.txt file. Use UnicView AD to generate it.

5.1 Frame Header (R3, RA)
The Serial Communication Frame Header is defined by R3:RA.

The default factory value is R3 = 0x5A, RA = 0xA5.

5.2 Baud rate (R1, R5, 59)
These three Configuration Registers control the Serial Port baud rate.

; # UnicView AD System Configuration File

; # WARNING : Do not modify this file manually! This may render the LCM unusable.

R1=07 ; Baudrate: 115200 bps

R5=00 ; Custom baudrate divider, high byte

R9=36 ; Custom baudrate divider, low byte

R3=5A ; Frame header, high byte

RA=A5 ; Frame header, low byte

R6=3F ; ON Brightness

R7=00 ; OFF Brightness

R8=05 ; SLEEP Time, in seconds

R2=0F

R4=03 ; Rotation: Clockwise270

RC=12

RD=00

RE=00

System Configuration (LCM Configuration) - Configuration 1 (R2)

 24 of 93 Development Guide 1.1

R1 Value Baud Rate (bps)

0x00 1200

0x01 2400

0x02 4800

0x03 9600

0x04 19200

0x05 38400

0x06 57600

0x07 115200

0x08 28800

0x09 76800

0x0A 62500

0x0B 125000

0x0C 250000

0x0D 23400

0x0E 345600

0x0F 691200

0x10 892900

0x11 Custom Baud Rate: 6250000/(R5:R9)

5.3 Configuration 1 (R2)

R2 Bit Binary Name Value

7 0x80 Undefined Write 0.

6 0x40 Undefined Write 0.

5 0x20 BACKLIGHT
0 = Disable Backlight Automatic Control.
1 = Enabled Backlight Automatic Control.

4 0x10 CRC_CTRL
0 = Disable CRC16 verification on serial port.
1 = Enable CRC16 verification on serial port.

3 0x08 AUTOSEND
0 = Disable Control Auto-Send.
1 = Enable Control Auto-Send.

2 0x04 RAM_INIT
0 = Clear RAM at power-up.
1 = Initialize RAM at power-up according to initial values.

0:1 0x02:0x01 OP_CYCLE

Operation Cycle Period:
00 = 200ms
01 = 160ms
10 = 120ms
11 = 80ms

Obs.: For resolutions greater than 1024x768, 120ms or above is
recommended.

System Configuration (LCM Configuration) - Screen Rotation (R4)

 25 of 93 Development Guide 1.1

5.4 Screen Rotation (R4)
This Configuration Register controls the clockwise rotation of the project, relative to an upright LCM facing the
user.

R4 Value Phase

0x00 0°

0x01 90° Clockwise

0x02 180° Clockwise

0x03 270° Clockwise

It can also be understood as a counter-clockwise rotation of the LCM in relation to an upright project:

5.5 Configuration 2 RC

RC Bit Binary Name Value

7 0x80 Undefined Write 0.

6 0x40 AD_ASM
0 = Disable AD Assembly.
1 = Enable AD Assembly.

5 0x20 BUZZER
0 = Enable Buzzer feedback.
1 = Disable Buzzer feedback.

4 0x10 DVPP
0 = Not used.
1 = 128 Display Variables per Page.

3 0x08 CRC_RESP
0 = Disable CRC16 on LCM responses.
1 = Enable CRC16 on LCM responses (R2.4 must be enabled).

2 0x04 CAL_POINTS
0 = Three-point Touch Panel calibration.
1 = Five-point Touch Panel calibration.

1 0x02 Undefined Write 1.

0 0x01 Undefined Write 0.

Info This Configuration Register is not available in MiniAD.

System Configuration (LCM Configuration) - Backlight Automatic Control (R6, R7, R8)

 26 of 93 Development Guide 1.1

5.6 Backlight Automatic Control (R6, R7, R8)
The backlight brightness can be set to automatically enter a low power mode. This behavior is enabled or
disabled through the “BACKLIGHT” bit of Configuration Register R2.

 Range Description

R6 [0x00,0x3F] Brightness level at normal mode.

R7 [0x00,0x3F] Brightness level at low-brightness mode.

R8 [0x00,0xFF]
The period, in seconds, after which the LCM will enter low-brightness mode. Counted
after the last touch on the Touch Panel.

If Backlight Automatic Control is enabled, after a set amount of time has passed without any touches detected
on the Touch Panel, the LCM will “sleep”, reducing its backlight level to the desired value.

5.7 Initial Screen (RD, RE)
These Configuration Registers (RD:RE) select the Screen to be shown when the LCM is powered on.

 Range Description

RD [0x00,0xFF] PicId at power-up, high byte.

RE [0x00,0xFF] PicId at power-up, low byte.

Control Registers - Initial Screen (RD, RE)

 27 of 93 Development Guide 1.1

6 Control Registers
The Control Registers, often referred to as Registers, reside in a volatile 8-bit memory space, which controls
run-time configurations and triggers certain operations. For example, some Registers control the current Screen
displayed, or backlight brightness level. Other Registers start data-moving procedures, or reset the LCM.

These Registers can be accessed via Serial Protocol, using the Write Registers (0x80) and Read Registers (0x81)
commands.

Caution Wait at least one Operation Cycle Period before writing to the same Register again.

The table on the following section lists all Control Registers. Detailed information on certain operations is
provided in the subsequent sections.

Control Registers - Control Register Table

 28 of 93 Development Guide 1.1

6.1 Control Register Table

Address Name Length
(Bytes)

Description Range Read
Write

0x00 VERSION_INFO 1 AD Firmware Version. BCD format (0x71 = Version 7.1). [0x00,0xFF] R

0x01 CURRENT_BACKLIGHT 1 Backlight brightness level. [0x00,0x3F] R/W

0x02 ACTIVATE_BUZZER 1 Activates the buzzer. [0x00,0xFF] * 10ms W

0x03 - 0x04 PIC_ID 2 Read: Returns the current Screen (PicId).
Write: Jumps to a new Screen.

 [0x0000,0xFFFF] R/W

0x05 TP_FLAG 1 Indicates when a touch has been detected. The coordinates are stored at Registers
"TP_COORDINATES".
Read: 0x5A = The coordinates have been updated. You must clear this Register, otherwise
coordinates are no longer updated.
Write: 0x00 = Clears the flag, freeing it to be activated again by the Touch Panel.

- R/W

0x06 TP_STATUS 1 0x00: The Touch Panel has not been touched yet.
0x01: "Press" state. Indicates that the user has just pressed the Touch Panel.
0x02: "Release" state. Indicates that the user has just released the Touch Panel. This is also the idle
state.
0x03: "Hold" state. Indicates that the user is holding the Touch Panel pressed down.

- R

0x07 - 0x0A TP_COORDINATES 4 Last touch coordinates captured. 0x07:0x08 = X, 0x09:0x0A = Y. Captures only the first coordinates
detected after "TP_FLAG" has been cleared.

- R

0x0B TP_ENABLE 1 0x00: Disables the Touch Panel.
0xFF: Enables the Touch Panel.

- R/W

0x0C - 0x0F RUN_TIME 4 Counts the time since the LCM was powered-on. BCD Format (0x10002233 = 1000h 22m 33s). [0000:00:00,9999:59:59] R

0x10 - 0x1C R0 - RC_MIRROR 13 Mirrors the R0 to RC SCRs. Writing to these registers doesn't modify the SCRs (use Register
OVERWRITE_CONFIG to modify).

 [0x00,0xFF] R/W

0x1D OVERWRITE_CONFIG 1 0x5A: Save R0 - RC_MIRROR into R0 - RC Registers.
0xA5: Discard changes in R0 - RC_MIRROR.

- W

0x1E READ_BACKLIGHT 1 Returns the current backlight brightness level. [0x00,0x3F] R

0x1F OVERWRITE_RTC 1 0x5A: Starts RTC date-time overwriting. - W

0x20 - 0x26 RTC_VALUE 7 Date and time from the RTC, in BCD format (YY:MM:DD:WW.HH:MM:SS).
Week days = 0 - 7, Sunday - Saturday. Writing to these registers doesn't modify the RTC (use
Register OVERWRITE_RTC to modify).

- R/W

0x27 - 0x3F - 25 - - -

Control Registers - Control Register Table

 29 of 93 Development Guide 1.1

Address Name Length
(Bytes)

Description Range Read
Write

0x40 - 0x49 - 10 - - -

0x4A - 0x4B TIMER_0 2 16-bit timer. Counts down to 0. Maximum error is ±4 ms.
Read: Returns the current count.
Write: Sets the timers to a specific value (starts counting down immediately).

 [0x0000,0xFFFF] * 4ms R/W

0x4C TIMER_1 1 8-bit timer. Counts down to 0. Maximum error is ±4 ms.
Read: Returns the current count.
Write: Sets the timers to a specific value (starts counting down immediately).

 [0x00,0xFF] * 4ms R/W

0x4D TIMER_2 1 8-bit timer. Counts down to 0. Maximum error is ±4 ms.
Read: Returns the current count.
Write: Sets the timers to a specific value (starts counting down immediately).

 [0x00,0xFF] * 4ms R/W

0x4E TIMER_3 1 8-bit timer. Counts down to 0. Maximum error is ±4 ms.
Read: Returns the current count.
Write: Sets the timers to a specific value (starts counting down immediately).

 [0x00,0xFF] * 4ms R/W

0x4F ACTIVATE_SOFT_CTRL 1 Activates a Software Control. Write the Software Control Code of the Control you want to activate.
It simulates a user touch, and the Control must be in the current Screen.

 [0x00,0xFF] W

0x50 AUDIO_PLAY_STOP 1 0x5B: Plays the current audio.
0x5C: Stops the current audio.

- W

0x51 - 0x52 AUDIO_ID 2 Audio ID to play. [0x0000,0x0FFF] W

0x53 OVERWRITE_AUDIO_VOL
UME

1 0x5A: Updates the audio volume settings, according to 0x54. - W

0x54 AUDIO_VOLUME 1 Audio volume level. Default value = 0x40. [0x00,0x40] W

0x55 AUDIO_STATUS 1 0x00: Stopped.
0x01: Playing.

[0x00,0x01] R

Control Registers - Control Register Table

 30 of 93 Development Guide 1.1

Address Name Length
(Bytes)

Description Range Read
Write

0x56 - 0x5F - 10 - - -

0x60 OVERWRITE_VIDEO 1 0x5A: Updates the video reproduction settings, according to 0x61 - 0x67. - R/W

0x61 VIDEO_MODE 1 0x00: Play single video in LCM memory.
0x01: Loop single video in LCM memory.
0x02: Repeat all videos in LCM memory.
0x03: Play single video in USB drive.
0x04: Loop single video in USB drive.
0x05: Repeat all videos in USB drive.

 [0x00,0x05] W

0x62 - 0x65 VIDEO_POSITION 4 Top-left coordinates of the video window (X:H, X:L, Y:H, Y:L).
0x00000000: Display centralized.

 [0x00000000, 0xFFFFFFFF] W

0x66 - 0x67 VIDEO_ID 2 Video ID to play, when using mode 0x00 or 0x03 in Register VIDEO_MODE. [0x0000,0xFFFF] W

0x68 OVERWRITE_VIDEO_VOL
UME

1 0x5A: Updates the video volume settings, according to 0x69. - W

0x69 VIDEO_VOLUME 1 Video volume level. Default value = 0x3F. [0x00, 0x3F] W

0x6A VIDEO_PLAY_PAUSE 1 0x5A: Toggles play/pause on the current video. - W

0x6B VIDEO_STOP 1 0x5A: Stops the reproduction of the current video. - W

0x6C VIDEO_NEXT 1 0x5A: Plays next video. - W

0x6D VIDEO_PREVIOUS 1 0x5A: Plays previous video. - W

0x6E VIDEO_STATUS 1 0x00: Idle.
0x01: Playing.
0x02: Paused.

[0x00, 0x02] R

0x6F - 0xE8 122 -

0xE9 KEYBOARD_STATUS 1 Read: Returns 0x01 if there's an open keyboard, or 0x00 if there's no keyboard open. [0x00,0x01] R

0xEA ACTIVATE_CALIBRATION 1 0x5A: LCM enters calibration routine. - W

0xEB CLEAR_TREND_CURVE 1 0x55: Clear all channel buffers.
0x56 + #: Clear channel C#, from C0 to C7. Example: 0x5A = Clear C4.

- W

0xEC - 0xED - 2 - - -

0xEE - 0xEF ACTIVATE_RESET 2 0x5AA5: Resets the LCM. - W

0xF0 - 0xFF - 16 - - -

Control Registers - Software Control Activation

 31 of 93 Development Guide 1.1

6.2 Software Control Activation
To activate a Software Control, write the Software Control Code of the Control in Register 0x4F.

Info The Software Control must be in the current PicId displayed.

Serial Command example: Activate Software Control 0x03.

5AA5 0480 4F 03

6.3 Audio Reproduction
Audio files must be stored in the LCMs internal memory. The files must be named “#.mp3” or “#.wav”, where #
denotes any decimal integer number (without zero padding) from 0 to 4095.

File Type .mp3 or .wav

Audio settings and control is achieved by writing the corresponding Control Registers. The next table shows
those Registers.

Info Only specific LCM models have audio output connections.

Address Name Length
(Bytes)

Description Range Read
Write

0x50 AUDIO_PLAY_STOP 1 0x5B: Plays the current audio.
0x5C: Stops the current audio.

- W

0x51 - 0x52 AUDIO_ID 2 Audio ID to play. [0x0000, 0x0FFF] W

0x53 OVERWRITE_AUDIO_VOLUME 1 0x5A: Updates the audio volume settings,
according to 0x54.

- W

0x54 AUDIO_VOLUME 1 Audio volume level. Default value = 0x40. [0x00, 0x40] W

0x55 AUDIO_STATUS 1 0x00: Stopped.
0x01: Playing.

[0x00, 0x01] R

Serial Command Example 1: Play audio file 6.wav at 100% volume.

5A A5 07 80 50 5B 0006 5A 40

Serial Command Example 2: Play audio file 3.wav at 50% volume.

5A A5 07 80 50 5B 0003 5A 20

Serial Command Example 3: Stop audio file 3.wav.

5A A5 05 80 50 5C 0003

Control Registers - Video Reproduction

 32 of 93 Development Guide 1.1

6.4 Video Reproduction
Video files can be stored either in the LCMs internal memory, or in an external USB flash drive. The files must be
named “#.avi”, where # denotes any decimal integer number (without zero padding) from 0 to 65535.

LCM models with audio output can also play audio from the video.

File Type .AVI

Video Encoding MJPEG

Video Resolution Equal or smaller than the
LCM’s resolution

Audio Encoding MP3, 16 kHz sampling

Info When playing video, Display Variables stop refreshing, and Audio reproduction (not
from video) is stopped.

Video settings and control is achieved by writing the corresponding Control Registers. The next table shows
those Registers.

Address Name Length
(Bytes)

Description Range Read
Write

0x60 OVERWRITE_VIDEO 1 0x5A: Updates the video reproduction settings,
according to 0x61 - 0x67.

- R/W

0x61 VIDEO_MODE 1 0x00: Play single video in LCM memory.
0x01: Loop single video in LCM memory.
0x02: Repeat all videos in LCM memory.
0x03: Play single video in USB drive.
0x04: Loop single video in USB drive.
0x05: Repeat all videos in USB drive.

 [0x00,0x05] W

0x62 -
0x65

VIDEO_POSITION 4 Top-left coordinates of the video window
(X:H, X:L, Y:H, Y:L).
0x00000000: Display centralized.

 [0x00000000,
0xFFFFFFFF]

W

0x66 -
0x67

VIDEO_ID 2 Video ID to play, when using mode 0x00 or 0x03 in
Register VIDEO_MODE.

 [0x0000,0xFFFF] W

0x68 OVERWRITE_VIDEO_
VOLUME

1 0x5A: Updates the video volume settings, according to
0x69.

- W

0x69 VIDEO_VOLUME 1 Video volume level. Default value = 0x3F. [0x00, 0x3F] W

0x6A VIDEO_PLAY_PAUSE 1 0x5A: Toggles play/pause on the current video. - W

0x6B VIDEO_STOP 1 0x5A: Stops the reproduction of the current video. - W

0x6C VIDEO_NEXT 1 0x5A: Plays next video. - W

0x6D VIDEO_PREVIOUS 1 0x5A: Plays previous video. - W

0x6E VIDEO_STATUS 1 0x00: Idle.
0x01: Playing.
0x02: Paused.

[0x00, 0x02] R

Control Registers - Touch Panel Calibration

 33 of 93 Development Guide 1.1

Serial Command Example 1: Play vide file 1.avi at 100% volume.

5AA5 0D80 60 5A 00 0000 0000 0001 5A 3F 5A

Serial Command Example 2: Play/pause the current video.

5AA5 0380 6A 5A

Serial Command Example 3: Stop current video.

5AA5 0380 6B 5A

6.5 Touch Panel Calibration
To start the touchscreen calibration routine, write the value 0x5A into the Control Register 0xEA.

Info The current PicId before starting the calibration routine is restored after calibration.

Serial Command example: Start touchscreen calibration routine.

5AA5 0480 EA 5A

Control Registers - Configuration Registers Overwriting

 34 of 93 Development Guide 1.1

6.6 Configuration Registers Overwriting
To modify the Configuration Registers, write their new values in Registers 0x10 to 0x1C, then write 0x5A in
Register 0x1D to save.

6.7 RTC Reading and Adjustment
To read the current date and time, read 7 Registers, starting from register 0x20.

To write new date and time, write 8 Registers, starting from register 0x1F. Register 1F must be written as 0x5A.

Serial Command example: Read the RTC. Current time is 25/10/2012, Thursday, 12:00:01.

5A A5 03 81 20 07

LCM answer:

5A A5 0A 81 20 07 12 10 25 04 12 00 01

Serial Command example: Modify the RTC to 25/10/2012, Thursday, 12:00:01.

5A A5 0A 80 1F 5A 12 10 25 04 12 00 01

Control Registers - Trend Curve Buffer Clearing

 35 of 93 Development Guide 1.1

6.8 Trend Curve Buffer Clearing
To clear a curve buffer channel, write (0x56 + Channel) in Register 0xEB. Write 0x55 to clear all channels.

5AA5 0380 EB <55 + CH>

Serial Command example: Clear channel 0.

5AA5 0380 EB 56

Serial Command example: Clear channel 7.

5AA5 0380 EB 5D

Serial Command example: Clear all channels.

5AA5 0380 EB 55

Info When using MiniAD, write 0x5A to clear channel 0, and 0x5B to clear channel 1.

Serial Communication Protocol - Introduction

 36 of 93 Development Guide 1.1

7 Serial Communication Protocol

7.1 Introduction

Info This section uses the following notation:

 < >: One byte.

[]: Optional fields.

 Numbers in Serial Commands are in hexadecimal format.

The native Proculus Protocol is composed of 5 commands:

• 0x80: Write Control Registers

• 0x81: Read Control Registers

• 0x82: Write VPs (RAM)

• 0x83: Read VPs (RAM)

• 0x84: Write Trend Curve Buffer

A Frame (or packet) structure follows this format:

<Frame Header H> <Frame Header L> <Byte Count> <Command> [<Data>...] [<CRC H> <CRC L>]

Or, in abbreviated notation:

<FHH> <FHL> <BC> <CMD> [<DATA>...] [<CRCH> <CRCL>]

• Frame Header: Identifies the start of a new Proculus Protocol packet. Can be used to uniquely identify
a LCM on a communication bus. Default value = 0x5AA5.

• Byte Count: Counts the number of bytes in the packet, excluding the Frame Header and this byte, i.e.,
counts all the bytes starting from the Command byte.

• Command: Defines the Command to be executed.

• Data: Includes addresses, lengths and values.

• CRC: Optional error detection value.

Info For simplicity, the CRC field is omitted in the Serial Commands in the following sections.

Serial Communication Protocol - Control Register Commands

 37 of 93 Development Guide 1.1

7.2 Control Register Commands

7.2.1 Write Registers (0x80)

This Command writes one or more Control Registers. You can write multiple Registers at once, if they are
sequential.

• Format

<FHH> <FHL> <BC> 80 <RG> <VL1> [<VL2> <VL3> ...]

<RG>: Register Address.

<VL#>: Value(s) to write.

• Examples

Write the value 3 in Register 0x01 (same as setting the backlight level):

5AA5 0380 01 03

Write values on 2 sequential Registers, starting from Register 0x03 (same as jumping to PicId):

 5AA5 0480 03 0001

Caution It is good practice to wait at least one Operation Cycle before writing to the same Control
Register again.

Serial Communication Protocol - Control Register Commands

 38 of 93 Development Guide 1.1

7.2.2 Read Registers (0x81)

This Command reads one or more Control Registers. You can read multiple Registers at once, if they are
sequential.

• Format

<FHH> <FHL> <BC> 81 <RG> <LEN>

<RG>: Register Address.

<LEN>: Number of Registers (bytes) to read.

Answer from LCM:

<FHH> <FHL> <BC> 81 <RG> <LEN> <VL1> [<VL2> <VL3> ...]

<VL#>: Value(s) read;

• Examples

Read the value in Register 0x01 (same as reading the backlight level):

5AA5 0381 01 01

Answer from LCM:

5AA5 0481 01 01 3F

Serial Communication Protocol - Control Register Commands

 39 of 93 Development Guide 1.1

Read values on 2 sequential Registers, starting from Register 0x03 (same as reading current PicId):

5AA5 0381 03 02

Answer from LCM:

5AA5 0581 03 02 0001

Serial Communication Protocol - VP (RAM) Commands

 40 of 93 Development Guide 1.1

7.3 VP (RAM) Commands

7.3.1 Write VPs (0x82)

This Command writes one or more VPs. You can write multiple VPS at once, if they are sequential.

• Format

<FHH> <FHL> <BC> 82 <VP><VP> <VL1><VL1> [<VL2><VL2> <VL3><VL3> ...]

<VP><VP>: RAM Address.

<VL#><VL#>: Value(s) written.

• Examples

Write the value 1234 in VP 0x0010:

5AA5 0582 0010 04D2

Write values on 4 sequential VPs, starting from VP 0x0000:

5AA5 0B82 0000 0022 0071 0006 0031

Serial Communication Protocol - VP (RAM) Commands

 41 of 93 Development Guide 1.1

7.3.2 Read VPs (0x83)

This Command reads one or more VPs. You can read multiple VPs at once, if they are sequential.

• Format

<FHH> <FHL> <BC> 83 <VP><VP> <LEN>

<VP><VP>: RAM Address.

<LEN>: Number of VPs (words) to read.

Answer from LCM:

<FHH> <FHL> <BC> 83 <VP><VP> <LEN> <VL1><VL1> [<VL2><VL2> <VL3><VL3> ...]

<VL#><VL#>: Value(s) read.

• Examples

Read the value in VP 0x0010:

5AA5 0483 0010 01

Answer from LCM:

5AA5 0683 0010 01 04D2

Serial Communication Protocol - VP (RAM) Commands

 42 of 93 Development Guide 1.1

Read values on 4 sequential VPs, starting from VP 0x0000:

5AA5 0483 0000 04

Answer from LCM:

5AA5 0C83 0000 04 0022 0071 0006 0031

Serial Communication Protocol - Trend Curve Buffer Commands

 43 of 93 Development Guide 1.1

7.4 Trend Curve Buffer Commands
This section describes how to write and clear data in the Trend Curve Buffers.

Info Refer to section “4.4.5 - Trend Curve Buffer Space” for more information.

7.4.1 Write Trend Curve Buffer (0x84)
This Command writes data into one or more Trend Curve Buffer channels.

Info AD firmware has 8 curve channels.

 MiniAD firmware has 2 curve channels.

• Format

<FHH> <FHL> <BC> 84 <CH> <VL><VL> [<VL><VL> ...]

<CH>: Sum of the binary representation of the channels that will receive the data.

<VL><VL>: Value(s) written. When addressing multiple channels, the data is alternated between channels.

Channel Binary Hexadecimal

0 00000001 0x01

1 00000010 0x02

2 00000100 0x04

3 00001000 0x08

4 00010000 0x10

5 00100000 0x20

6 01000000 0x40

7 10000000 0x80

• Examples

Write 8 values in channel 0:

5AA5 1284 01 0032 0072 009F 0004 0017 0036 0093 001A

Serial Communication Protocol - Trend Curve Buffer Commands

 44 of 93 Development Guide 1.1

Write 4 values in channel 1 and 4 values in channel 3:

5AA5 1284 0A 0032 0072 009F 0004 0017 0036 0093 001A

7.4.2 Curve Clearing

To clear a curve buffer channel, use a Write Registers (0x80) Command to write (0x56 + Channel) in the Control
Register 0xEB. Write 0x55 to clear all channels.

5AA5 0380 EB <55 + CH>

• Examples:

Clear channel 0:

5AA5 0380 EB 56

Clear channel 7:

5AA5 0380 EB 5D

Clear all channels:

5AA5 0380 EB 55

Info When using MiniAD, write 0x5A to clear channel 0, and 0x5B to clear channel 1.

Info Refer to section “6 - Control Registers” for more information on Control Registers

Serial Communication Protocol - CRC

 45 of 93 Development Guide 1.1

7.5 CRC
AD firmware uses Cyclic Redundancy Check (CRC) to verify data integrity during communication. The specific

variation used is CRC-16 Modbus.

Info Traditional CRC calculation yields a swapped value. Swap the high and low bytes to get
the correct value.

The following pseudo-code explains how to calculate the CRC (already swapped).

start

 CRC ← 0xFFFF

 for each byte, do:

 {

 CRC ← CRC xor byte

 repeat

 {

 if CRC.bit0 = 1, then

 {

 shift CRC right once

 CRC ← CRC xor 0xA001

 }

 else

 shift CRC right once

 }

 until 8 right shifts have been performed

 }

 Swap CRC

end

Serial Communication Protocol - CRC

 46 of 93 Development Guide 1.1

Some real code examples (already swapped):

• C Language:

// Compute the MODBUS RTU CRC

UInt16 ModRTU_CRC(byte[] buf, int len)

{

 UInt16 crc = 0xFFFF;

 for (int pos = 0; pos < len; pos++)

 {

 // XOR byte into least sig. byte of crc

 crc ^= (UInt16)buf[pos];

 for (int i = 8; i != 0; i--) // Loop over each bit

 {

 if ((crc & 0x0001) != 0) // If the LSB is set

 {

 crc >>= 1; // Shift right and XOR 0xA001

 crc ^= 0xA001;

 }

 else // Else LSB is not set

 crc >>= 1; // Just shift right

 }

 }

 // Swap high and low bytes

 crc = ((crc & 0xFF00) >> 8) | ((crc & 0x00FF) << 8);

 return crc;

}

Serial Communication Protocol - CRC

 47 of 93 Development Guide 1.1

• C# Language:

 /// <summary>
 /// Calculates CRC16 for a input byte array.
 /// </summary>
 /// <param name="dataArray">Input data.</param>
 /// <returns>The calculated CRC16.</returns>
 public static ushort CalculateCrc16(byte[] dataArray)
 {
 // Compute the MODBUS RTU CRC
 ushort crc = 0xFFFF;

 foreach (var data in dataArray)
 {
 crc ^= data; // XOR byte into least significative byte of CRC

 for (var i = 8; i > 0; i--)
 {
 // Loop over each bit
 if ((crc & 0x0001) != 0)
 {
 // If the LSB is set
 crc >>= 1; // Shift right and XOR 0xA001
 crc ^= 0xA001;
 }
 else // Else LSB is not set
 crc >>= 1; // Just shift right
 }
 }

 var highByte = (crc & 0xFF00);
 var lowByte = crc & 0x00FF;

 crc = (ushort) ((highByte >> 8) | (lowByte << 8));

 return crc;
 }

Interface Objects - VP and PP Distribution

 48 of 93 Development Guide 1.1

8 Interface Objects
On AD LCMs, direct user interaction is provided by Interface Objects (or, simply, Objects). There are two kinds
of Interface Objects:

• Controls – Provide user input.

• Display Variables – Provide visual output to the user.

Using both kinds of Interface Objects, you can layout and compose a great human-machine interface (HMI). Each
Screen on the LCM has its own set of Objects.

8.1 VP and PP Distribution
Most Interface Objects must be assigned to a Variable Pointer (VP). A VP is an address on the RAM space. Each
VP points to a 2-byte (1 word) value.

Info The value stored on a VP is called VPC (Value Pointer Content). It is also denoted as *VP.

For example, if an Incremental Input is assigned to VP 0x0000, when it is activated, it will increment the value
stored at this VP. Assuming the initial value is 0, after two activations (touches on the Touch Panel), the new
value stored on VP x0000 is 2.

A Parameter Pointer (PP) is a VP used to store the parameters of a Display Variable, so that they can be modified
by the user at run-time.

Info If the PP of a Display Variable is set to the default value (-1 or 0xFFFF), the parameters
of this Display Variable are fixed, and can only be changed by modifying the project. If
you set the PP to a valid RAM address, the parameters are modifiable, and are initialized
along the rest of the RAM.

Interface Objects - VP and PP Distribution

 49 of 93 Development Guide 1.1

Since there are no restrictions on address assignment, conflicts may show up on a project. For example, usually,
you should not assign two Text Displays with Text Lengths greater than 2 to subsequent VPs, because their data
will overwrite each other:

To avoid this problem, always keep in mind how many VPs an Interface Object takes, space them properly:

Info While unforeseen address overlapping is a project error, it’s sometimes desirable to
have overlapping VPs. Multiple Display Variables may be assigned to the same VP, for
example, to display the same value in different locations or formats.

Interface Objects - VP and PP Distribution

 50 of 93 Development Guide 1.1

To improve scalability and avoid unwanted data overlapping, we recommend planning your project’s address
allocation beforehand, so that you can reserve addresses between Objects, and give them plenty of space to
expand:

Each project requires a different strategy for addressing rules, but here are some examples:

• All Objects will have even VPs.

• Text Displays will always have VPs 0x3#00 (0x3100, 0x3200, etc.);

• Other Objects will have VPs 0x0##0 (0x0100, 0x0110, 0x0200, etc.), and have PPs 0x5##0 (0x5100,
0x5110, 0x5200, etc.);

By using addressing rules, you can greatly reduce mapping issues and reworks when scaling up or down your
projects.

Info Always verify how many VPs and PPs (if used) an Interface Object requires.

When an Object has an “Area” property, this area is a rectangular region, defined by its top-left coordinate
(Initial Coordinates, denoted Xi and Yi) and its bottom-right coordinate (Final Coordinates, denoted Xf and Yf).

Interface Objects - Controls

 51 of 93 Development Guide 1.1

8.2 Controls
Controls provide direct user input interaction. They can be considered as buttons. All Controls can be activated
by a physical touch from the user, and most of them can be activated via Serial Communication. They are usually
employed to modify the contents of the RAM space, although they may be used purely as Serial Communication
triggers.

Info Controls may be user-activated or software-activated (via Serial Communication). Refer
to section “6.2 - Software Control Activation” for details on how to activate a Software
Control.

Caution Controls can’t have overlapping areas.

All Controls have at least 5 parameters, detailed in the following table:

Definition Length
(bytes)

Description

PicId 2 Picture ID

Area 8 Area of the Control: (Xi, Yi, Xf, Yf).

Special Conditions:

• Xi = 0xFFFF: This Control is a Software Control, i.e., a Control that can be activated
via Serial Communication.
In this case, Yi.H defines the Software Control Code, which is the code that, when
written to Register 0x4F, activates this Control.

• Xi = 0x5***: This Control plays Audio Segments when activated.
In this case, the high nibbles of Xf and Yf define the AudioId (1 byte), and the high
nibble of Yi defines the Audio Length.
Buzzer feedback is disabled for this Control.

JumpId 2 PicId of the screen to jump to.

0xFF**: Disable jump.

FxId 2 PicId of the screen where the "pressed" effects for this control are.

0xFF**: Disable effect.

Control_Code 2 Operation Code for the Control.

High byte defines the operation mode:
0xFF** = Invalid.
0xFE** = Normal Control. Auto-Send Data enabled for this Control.
0xFD** = Normal Control. Auto-Send Data disabled for this Control.
Other Values = Basic Touch Control. High byte and Low byte are ASCII Code characters.

Low byte defines the Control Type.
If High byte is neither 0xFF, 0xFE or 0xFD, low byte is ASCII Code.

Control_Parameters 16 or 32 When Control_Code = 0xFE** or 0xFD**, additional parameters.

Interface Objects - Controls

 52 of 93 Development Guide 1.1

8.2.1 Basic Touch
Used to implement basic Screen navigation and to create the keys on keyboards.

Address Definition
Length
(byte)

Description

0x00 PicId 2 ID of the Screen.

0x02 Area 8 Area of the Control: (Xi, Yi, Xf, Yf).

0x0A JumpId 2
PicId of the screen to jump to.

0xFF**: Disable jump.

0x0C FxId 2
PicId of the screen where the "pressed" effects for this control are.

0xFF**: Disable effect.

0x0E Control_Code 2
Two ASCII Code characters, for when this Basic Touch is used as a keyboard key.
0xFF, 0xFE and 0xFD characters are not allowed in the high byte.

Interface Objects - Controls

 53 of 93 Development Guide 1.1

8.2.2 Set Value
Used to implement a button that writes a value to a VP when pressed, and to signal events to an external
controller.

Address Definition
Length
(byte)

Description

0x00 PicId 2 ID of the Screen.

0x02 Area 8 Area of the Control: (Xi, Yi, Xf, Yf).

0x0A JumpId 2
PicId of the screen to jump to.

0xFF**: Disable jump.

0x0C FxId 2
PicId of the screen where the "pressed" effects for this control are.

0xFF**: Disable effect.

0x0E Control_Code 2 0xFE05 or 0xFD05

0x10 0xFE 1 0xFE

0x11 VP 2 Variable Pointer.

0x13 VP_Mode 1

Value Memory Size.

0x00: 16-bit Integer.
0x01: 8-bit Unsigned Integer in High Byte of the VP.
0x02: 8-bit Unsigned Integer in Low Byte of the VP.
0x10-0x1F: 1-bit value. 0x10 corresponds to VP.0, 0x1F corresponds to VP.F.

In 8-bit mode, uses the Low Byte in return value. In 1-bit mode, uses the LSB.

0x14 Return_Value 2 Return key code.

0x16 0x00 10 0x00.

Interface Objects - Controls

 54 of 93 Development Guide 1.1

8.2.3 Touch Status
Used to implement push-buttons. Can be configured to execute different operations during its three states:

• Pressed

• Held down

• Released

Address Definition
Length
(byte)

Description

0x00 PicId 2 ID of the Screen.

0x02 Area 8 Area of the Control: (Xi, Yi, Xf, Yf).

0x0A JumpId 2
PicId of the screen to jump to.

0xFF**: Disable jump.

0x0C FxId 2
PicId of the screen where the "pressed" effects for this control are.

0xFF**: Disable effect.

0x0E Control_Code 2 0xFE08 or 0xFD08

0x10 0xFE 1 0xFE

0x11 OP_Mode_Press 1

Operation mode for when this control is pressed.

0x00: Does nothing.
0x01: Copies *[Source Address (Press)] to RAM at [Target Address (Press)].
0x02: Sends *[Source Address (Press)] to the Serial Port.
0x03: Copies *[Source Address (Press)] to Control Register Memory at [Target
Address (Press)].

0x12 Source_Address_Press 2 Source Address for copying (Press).

0x14 Target_Address_Press 2 Target Address for copying (Press).

0x16 0x00 1 0x00

0x17 Length_Press 1
Number of bytes to copy (Press). When in Operation Mode 0x01, this number
must be even.

0x18 0xFE 1 0xFE

0x19 OP_Mode_Hold 1

Operation mode for when this control is held down.

0x00: Does nothing.
0x01: Copies *[Source Address (Hold)] to RAM at [Target Address (Hold)].
0x02: Sends *[Source Address (Hold)] to the Serial Port.
0x03: Copies *[Source Address (Hold)] to Control Register Memory at [Target
Address (Hold)].

Interface Objects - Controls

 55 of 93 Development Guide 1.1

0x1A Source_Address_Hold 2 Source Address for copying (Hold).

0x1C Target_Address_Hold 2 Target Address for copying (Hold).

0x1E 0x00 1 0x00

0x1F Length_Hold 1
Number of bytes to copy (Hold). When in Operation Mode 0x01, this number
must be even.

0x20 0xFE 1 0xFE

0x21 OP_Mode_Release 1

Operation mode for when this control is released.

0x00: Does nothing.
0x01: Copies *[Source Address (Release)] to RAM at [Target Address (Release)].
0x02: Sends *[Source Address (Release)] to the Serial Port.
0x03: Copies *[Source Address (Release)] to Control Register Memory at [Target
Address (Release)].

0x22 Source_Address_Release 2 Source Address for copying (Release).

0x24 Target_Address_Release 2 Target Address for copying (Release).

0x26 0x00 1 0x00

0x27 Length_Release 1
Number of bytes to copy (Release). When in Operation Mode 0x01, this number
must be even.

0x28 0x00 8 0x00

Interface Objects - Controls

 56 of 93 Development Guide 1.1

8.2.4 Numeric Input
Opens a keyboard for numeric values input. It uses fixed-point integer values.

Address Definition
Length
(byte)

Description

0x00 PicId 2 ID of the Screen.

0x02 Area 8 Area of the Control: (Xi, Yi, Xf, Yf).

0x0A JumpId 2
PicId of the screen to jump to.

0xFF**: Disable jump.

0x0C FxId 2
PicId of the screen where the "pressed" effects for this control are.

0xFF**: Disable effect.

0x0E Control_Code 2 0xFE00 or 0xFD00

0x10 0xFE 1 0xFE

0x11 VP 2 Variable Pointer.

0x13 VP_Mode 1

Value Memory Size.

0x00: 16-bit Integer.
0x01: 32-bit Integer.
0x02: 8-bit Unsigned Integer in High Byte of the VP.
0x03: 8-bit Unsigned Integer in Low Byte of the VP.
0x04: 64-bit Integer.

In 8-bit mode, uses the Low Byte in return value. In 1-bit mode, uses the LSB.

0x14 Integer_Digits 1 Number of digits to the left of the decimal separator.

0x15 Decimal_Digits 1 Number of digits to the right of the decimal separator.

0x16 Cursor_Origin 4 Coordinates of the top-left corner of the cursor's origin.

0x1A Font_Color 2 Color of the font.

0x1C LibId 1 Index in the FLASH memory of the Font to use.

0x1D Font_Width 1 Font width, in pixels. Range: [0x04,0xFF]

0x1E Cursor_Color 1

Color of the input cursor.

0x00: Black
Other Values: White.

0x1F Show_Characters 1

Sets whether the characters are to be displayed normally.

0x00: Characters displayed as asterisks (*).
Other Values: Normal display.

0x20 0xFE 1 0xFE

0x21 External_Keyboard 1

Indicates if the keyboard image is in the same Screen as this Control.

0x00: Keyboard on current Screen.
Other Values: Keyboard on another Screen.

0x22 Source_PicId 2

PicId of the Screen used as image source for this control. It’s the PicId where the
keyboard image is.

Not used if “External_Keyboard” = 0x00.

0x24 Source_Area 8
Area of the keyboard: (Xi, Yi, Xf, Yf).

Not used if “External_Keyboard” = 0x00.

0x2C Target_Origin 4
Top-left coordinates of the pasting area of the keyboard.

Not used if “External_Keyboard” = 0x00.

0x30 0xFE 1 0xFE

0x31 Limit_Value_Range 1

Limit the control's accepted input values according to the range set.

0xFF: Limit accepted values to the range set.
Other Values: Any value is accepted.

0x32 Min_Value 4 Minimum value accepted by the control.

0x36 Max_Value 4 Maximum value accepted by the control.

0x3A 0x00 6 0x00.

Interface Objects - Controls

 57 of 93 Development Guide 1.1

The keys on the keyboard must be designed with Basic Touch Controls. Each Basic Touch’s “TP_Code” must be
assigned to a code:

Key Definition Description

0x00F0 Cancel Cancels the input, doesn’t change any data.

0x00F1 Return Completes the input, writing the value to the VP.

0x00F2 Backspace Deletes the right-most character.

0x0030 - 0x0039 Digits ASCII Code of a digit (0 - 9).

0x002D +/- Inverts the sign of the value (positive or negative).

0x002E . Inserts a decimal separator (dot).

Caution The sum of Integer and Decimal digits should not exceed 20.

Interface Objects - Controls

 58 of 93 Development Guide 1.1

8.2.5 Text Input
Opens a keyboard for alphanumeric (text) values input. It uses terminator characters (0xFF) to signal end of text.

Address Definition
Length
(byte)

Description

0x00 PicId 2 ID of the Screen.

0x02 Area 8 Area of the Control: (Xi, Yi, Xf, Yf).

0x0A JumpId 2
PicId of the screen to jump to.

0xFF**: Disable jump.

0x0C FxId 2
PicId of the screen where the "pressed" effects for this control are.

0xFF**: Disable effect.

0x0E Control_Code 2 0xFE06 or 0xFD06

0x10 0xFE 1 0xFE

0x11 VP 2 Variable Pointer.

0x13 Text_Max_Length 1
Maximum text length, in words (two characters for each word).
Range: [0x01,0x7B].

0x14 Scan_Mode 1
Input mode.
0x00: re-input, 0x01: modify existing text.

0x15 LibId 1 Index in the FLASH memory of the Font to use.

0x16 Font_Width 1 Font width, in pixels. Range: [0x04,0xFF]

0x17 Font_Height 1 Font height, in pixels. When using “LibId” = 0x00, must be twice the Width.

0x18 Cursor_Color 1

Color of the input cursor.

0x00: Black
Other Values: White.

0x19 Color 2 Text color.

0x1B Text_Area_Initial 4 Top-left coordinates of the area where the text will be displayed: (Xi, Yi).

0x1F Update_Input_Status 1

Enables or disables input status updating.
When enabled, the address [VP-1] is used to indicate the input status of this control:
[VP-1].High = Has the value 0x5A when the keyboard is closed. Other values indicate
the keyboard is open.
[VP-1].Low = Last successful input length, in bytes.

0x55: Enable Input Status Update.
0x00: Disable Input Status Update.

0x20 0xFE 1 0xFE

0x21 Text_Area_Final 4 Bottom-right coordinates of the area where the text will be displayed: (Xf, Yf).

0x25 External_Keyboard 1

Indicates if the keyboard image is in the same Screen as this Control.

0x00: Keyboard on current Screen.
Other Values: Keyboard on another Screen.

0x26 Source_PicId 2

PicId of the Screen used as image source for this control. It’s the PicId where the
keyboard image is.

Not used if “External_Keyboard” = 0x00.

0x28 Source_Area 8
Area of the keyboard: (Xi, Yi, Xf, Yf).

Not used if “External_Keyboard” = 0x00.

0x30 0xFE 1 0xFE

0x31 Target_Origin 4
Top-left coordinates of the pasting area of the keyboard.

Not used if “External_Keyboard” = 0x00.

0x35 Hide_Characters 1

Sets whether the characters are to be masked by asterisks.

0x00: Normal display.
0x01: Characters displayed as asterisks (*).

0x36 0x00 10 0x00.

Interface Objects - Controls

 59 of 93 Development Guide 1.1

When you close the keyboard (if not cancelled), it automatically appends terminator bytes (0xFF) to the end of
the text, if any unused addresses remain. One terminator byte is used if there’s an odd number of characters,
and two terminator bytes (one VP) are used if there’s an even number of characters (smaller than the maximum
length).

The keys on the keyboard must be designed with Basic Touch Controls. Each Basic Touch’s “TP_Code” must be
assigned to a code. For digit keys, use ASCII codes:

Code Lower Upper Code Lower Lower Code Lower Lower Code Lower Lower

0x7E60 ` ~ 0x5171 q Q 0x4161 a A 0x5A7A z Z

0x2131 1 ! 0x5777 w W 0x5373 s S 0x5878 x X

0x4032 2 @ 0x4565 e E 0x4464 d D 0x4363 c C

0x2333 3 # 0x5272 r R 0x4666 f F 0x5676 v V

0x2434 4 $ 0x5474 t T 0x4767 g G 0x4262 b B

0x2535 5 % 0x5979 y Y 0x4868 h H 0x4E6E n N

0x5E36 6 ^ 0x5575 u U 0x4A6A j J 0x4D6D m M

0x2637 7 & 0x4969 i I 0x4B6B k K 0x3C2C , <

0x2A38 8 * 0x4F6F o O 0x4C6C l L 0x3E2E . >

0x2839 9 (0x5070 p P 0x3A3B ; : 0x3F2F / ?

0x2930 0) 0x7B5B [{ 0x2227 ' " 0x2020 Space Space

0x5F2D - _ 0x7D5D] } 0x0D0D New Line New Line

0x2B3D = + 0x7C5C \ |

For control keys, use these codes:

Code Definition Description

0x00F0 Cancel Cancels the input, doesn’t change any data.

0x00F1 Return Completes the input, writing the value to the VP.

0x00F2 Backspace Deletes the character to the left of the cursor.

0x00F3 Delete Deletes the character to the right of the cursor.

0x00F4 CapsLock Caps lock. Button Effect must be enabled for this function.

0x00F7 Left Moves the cursor left.

0x00F8 Right Moves the cursor right.

Info Keep “Text_Max_Length” and “Update_Input_Status” in mind when calculating the
total VP range you should reserve to a Text Input.

Interface Objects - Controls

 60 of 93 Development Guide 1.1

8.2.6 Incremental Input
Used to implement a button that increments the content of a VP.

Address Definition
Length
(byte)

Description

0x00 PicId 2 ID of the Screen.

0x02 Area 8 Area of the Control: (Xi, Yi, Xf, Yf).

0x0A JumpId 2
PicId of the screen to jump to.

0xFF**: Disable jump.

0x0C FxId 2
PicId of the screen where the "pressed" effects for this control are.

0xFF**: Disable effect.

0x0E Control_Code 2 0xFE02 or 0xFD02

0x10 0xFE 1 0xFE

0x11 VP 2 Variable Pointer.

0x13 VP_Mode 1

Value Memory Size.

0x00: 16-bit Integer.
0x01: 8-bit Unsigned Integer in High Byte of the VP.
0x02: 8-bit Unsigned Integer in Low Byte of the VP.
0x10-0x1F: 1-bit value. 0x10 corresponds to VP.0, 0x1F corresponds to VP.F.

In 8-bit mode, uses the Low Byte in return value. In 1-bit mode, uses the LSB.

0x14 Increment_Sign 1
Sign of the increment.
0x00: --, others: ++.

0x15 Loop 1
0x00: Disabled. The value stops changing when max. or min. values are reached.
Other Values: Enabled. The value loops around the range when it reaches max. or
min. values.

0x16 Increment_Value 2 Step size: 0x0000-0x7FFF. Must be 0 or 1 when “VP_Mode” is in 1-bit mode.

0x18 Min_Value 2 Minimum value accepted by the control.

0x1A Max_Value 2 Maximum value accepted by the control.

0x1C Continuous_Increment 1
0x00: Continuous. The value is changed while the user holds it.
0x01: One-Step. The value is changed once per touch.

0x1D 0x00 3 0x00.

Interface Objects - Controls

 61 of 93 Development Guide 1.1

8.2.7 Slider Input
Used to implement a sliding button that dynamically changes the content of a VP.

Info Slider Input doesn’t support the Software Control feature.

Address Definition Length (byte) Description

0x00 PicId 2 ID of the Screen.

0x02 Area 8 Area of the Control: (Xi, Yi, Xf, Yf).

0x0A JumpId 2
PicId of the screen to jump to.

0xFF**: Disable jump.

0x0C FxId 2
PicId of the screen where the "pressed" effects for this control are.

0xFF**: Disable effect.

0x0E Control_Code 2 0xFE03

0x10 0xFE 1 0xFE

0x11 VP 2 Variable Pointer.

0x13 VP_Mode_Orientation 1

High nibble defines the VP_Mode:
0x0*: 16-bit Integer.
0x1*: 8-bit Unsigned Integer in High Byte of the VP.
0x2*: 8-bit Unsigned Integer in Low Byte of the VP.

Low nibble defines the slider orientation:
0x*0: Horizontal.
0x*1: Vertical.

0x14 Sliding_Area 8 Sliding Area. Should be equal to “Area”.

0x1C Min_Value 2 Minimum value accepted by the control.

0x1E Max_Value 2 Maximum value accepted by the control.

Info A Slider Input activates after 0.5 seconds of being held pressed.

Interface Objects - Controls

 62 of 93 Development Guide 1.1

8.2.8 RTC Input
Opens a keyboard to modify the current date and time.

Address Definition
Length
(byte)

Description

0x00 PicId 2 ID of the Screen.

0x02 Area 8 Area of the Control: (Xi, Yi, Xf, Yf).

0x0A JumpId 2
PicId of the screen to jump to.

0xFF**: Disable jump.

0x0C FxId 2
PicId of the screen where the "pressed" effects for this control are.

0xFF**: Disable effect.

0x0E Control_Code 2 0xFE04 or 0xFD04

0x10 0xFE 1 0xFE

0x11 0x00 3 0x00.

0x14 (x, y) 4 Position of cursor, right alignment.

0x18 Color 2 Font color.

0x1A LibId 1 Index in the FLASH memory of the Font to use.

0x1B Font_Width 1 Font width, in pixels. Range: [0x04,0xFF]

0x1C Cursor_Color 1

Color of the input cursor.

0x00: Black
Other Values: White.

0x1D External_Keyboard 1

Indicates if the keyboard image is in the same Screen as this Control.

0x00: Keyboard on current Screen.
Other Values: Keyboard on another Screen.

0x1E Source_PicId 2

PicId of the Screen used as image source for this control. It’s the PicId where the
keyboard image is.

Not used if “External_Keyboard” = 0x00.

0x20 0xFE 1 0xFE

0x21 Source_Area 8
Area of the keyboard: (Xi, Yi, Xf, Yf).

Not used if “External_Keyboard” = 0x00.

0x29 Target_Origin 4
Top-left coordinates of the pasting area of the keyboard: (Xi, Yi).

Not used if “External_Keyboard” = 0x00.

0x2D 0x00 3 0x00.

Info It’s not possible to adjust date and time separately using RTC Input.

Interface Objects - Controls

 63 of 93 Development Guide 1.1

8.2.9 Popup
Opens a keyboard in a popup window-style.

Address Definition
Length
(byte)

Description

0x00 PicId 2 ID of the Screen.

0x02 Area 8 Area of the Control: (Xi, Yi, Xf, Yf).

0x0A JumpId 2
PicId of the screen to jump to.

0xFF**: Disable jump.

0x0C FxId 2
PicId of the screen where the "pressed" effects for this control are.

0xFF**: Disable effect.

0x0E Control_Code 2 0xFE01 or 0xFD01

0x10 0xFE 1 0xFE

0x11 VP 2 Variable Pointer.

0x13 VP_Mode 1

Value Memory Size.

0x00: 16-bit Integer.
0x01: 8-bit Unsigned Integer in High Byte of the VP.
0x02: 8-bit Unsigned Integer in Low Byte of the VP.
0x10-0x1F: 1-bit value. 0x10 corresponds to VP.0, 0x1F corresponds to VP.F.

In 8-bit mode, uses the Low Byte in return value. In 1-bit mode, uses the LSB.

0x14 Source_PicId 2
PicId of the Screen used as image source for this control. It’s the PicId where the
popup image is.

0x16 Source_Area 8
Area of the keyboard: (Xi, Yi, Xf, Yf).

0x1E Target_Origin_X 2 Left coordinate of the pasting area of the keyboard.

0x20 0xFE 1 0xFE

0x21 Target_Origin_Y 2 Top coordinate of the pasting area of the keyboard.

0x23 0x00 13 0x00.

When creating the Basic Touch buttons for a Popup, valid ASCII Codes range from 0x00 to 0xFE, while 0xFF
cancels the Popup (close it without changing the value in the VP).

Interface Objects - Display Variables

 64 of 93 Development Guide 1.1

8.3 Display Variables
Display Variables provide visual interaction to the users. They function as numeric, textual and graphic
indicators. Display Variables are always associated to a memory address, and show the contents of such address
in some human-readable form.

Caution There is a maximum number of Display Variables per Screen. This number (64 or 128) is
set on the Configuration 1 (R2 Register.

While Controls can be placed in any PicId, Display Variables have a maximum allowed PicId, which depends on
the number of Display Variables per Page configuration:

Display Variables per Page PicId range that accepts Display Variables

64 [0,1023]

128 [0,511]

Caution Make sure to reserve enough VPs for each Display Variable. Consider their data sizes
and their PP lengths (when PPs are used).

Interface Objects - Display Variables

 65 of 93 Development Guide 1.1

8.3.1 Dynamic Icon
Used to show an Icon from an Icon Library. The current Icon is determined by the value of the VP.

File Address PP Address Definition Length
(Bytes)

Description

0x00 0x5A00 2

0x02 PP 2 Parameter Pointer.
0xFFFF: Disables PP (no run-time modification).
0x0000 - 0x6FFF: Enables PP (run-time modification possible).

0x04 0x0008 2

0x06 0x00 VP 2 Variable Pointer.

0x08 0x01 Coordinates 4 Top-left coordinates of the Icons to display: (Xi, Yi).

0x0C 0x03 Min_Value 2 Minimum value.

0x0E 0x04 Max_Value 2 Maximum value.

0x10 0x05 Min_Icon 2 Icon associated to the Min_Value.

0x12 0x06 Max_Icon 2 Icon associated to the Max_Value.

0x14 0x07.H LibId 1 Index in the FLASH memory of the Icon Library to use.

0x15 0x07.L Transparency 1 0x00: Transparent background.
Other Values: Opaque background.

PP Length: 8 VPs

Info Values greater than “Max_Value” or smaller than “Min_Value” will show no Icons.

Interface Objects - Display Variables

 66 of 93 Development Guide 1.1

8.3.2 Animated Icon
Used to show a loop animation of Icons from an Icon Library. The animation state is determined by the value of
the VP.

File
Address

PP
Address

Definition Length
(Bytes)

Description

0x00 0x5A01 2

0x02 PP 2 Parameter Pointer.
0xFFFF: Disables PP (no run-time modification).
0x0000 - 0x6FFF: Enables PP (run-time modification possible).

0x04 0x000A 2

0x06 0x00 VP 2 Variable Pointer.
High word: Unsigned Integer.
Low word: Reserved, stores animation status.

0x08 0x01 Coordinates 4 Top-left coordinates of the Icons to display: (Xi, Yi).

0x0C 0x03 Restart_Animation 2 Indicates whether the animation should always start from the first frame
when restarting.

0x0000: Animation continues from the last shown frame when reset.
0x0001: Animation starts from the first frame (“Icon_Start”) when reset.

0x0E 0x04 Value_Stop 2 Value that stops the animation.

0x10 0x05 Value_Start 2 Value that starts the animation.

0x12 0x06 Icon_Stop 2 Icon displayed when the animation is stopped.

0x14 0x07 Icon_Start 2 Icon displayed at the first frame of the animation.

0x16 0x08 Icon_End 2 Icon displayed at the last frame of the animation.

0x18 0x09.H LibId 1 Index in the FLASH memory of the Icon Library to use.

0x19 0x09.L Transparency 1 0x00: Transparent background.
Other Values: Opaque background.

PP Length: 10 VPs

Caution Animated Icon uses 2 VPs. Make sure to reserve VPs accordingly.

Info Values different from both “Value_Start” and “Value_Stop” will show no Icons.

Interface Objects - Display Variables

 67 of 93 Development Guide 1.1

8.3.3 Slider Display
Used to show an Icon that moves along a given axis (horizontal or vertical) based on the value of the VP. Typically
used in linear graphs, or in conjunction with Slider Inputs.

File
Address

PP
Address

Definition Length
(Bytes)

Description

0x00 0x5A02 2

0x02 PP 2 Parameter Pointer.
0xFFFF: Disables PP (no run-time modification).
0x0000 - 0x6FFF: Enables PP (run-time modification possible).

0x04 0x0009 2

0x06 0x00 VP 2 Variable Pointer.

0x08 0x01 Min_Value 2 Minimum value accepted by the control.

0x0A 0x02 Max_Value 2 Maximum value accepted by the control.

0x0C 0x03 Coordinate_Initial 2 Minimum position of the slider, when its value equals
“Min_Value”.
X coordinate for horizontal sliders, Y coordinate for vertical
sliders.

0x0E 0x04 Coordinate_Final 2 Maximum position of the slider, when its value equals
“Max_Value”.
X coordinate for horizontal sliders, Y coordinate for vertical
sliders.

0x10 0x05 IconId 2 Index of the Icon in the Icon Library that will be used as the Slider
handle.

0x12 0x06 Icon_Secondary_Position 2 Position of slider icon in the secondary axis.
Y coordinate for horizontal sliders, X coordinate for vertical
sliders.

0x14 0x07.H Icon_Primary_Offset 1 Icon position offset adjustment on the primary axis, in pixels.

Offset in the X axis for horizontal sliders, and in the Y axis for
vertical sliders.

0x15 0x07.L Orientation 1 Slider orientation.
0x00: Horizontal
Other Values: Vertical.

0x16 0x08.H LibId 1 Index in the FLASH memory of the Icon Library to use.

0x17 0x08.L Transparency 1 0x00: Transparent background.
Other Values: Opaque background.

0x18 0x09.H VP_Mode 1 Value Memory Size.

0x00: 16-bit Integer.
0x01: 8-bit Unsigned Integer in High Byte of the VP.
0x02: 8-bit Unsigned Integer in Low Byte of the VP.

PP Length: 10 VPs

Interface Objects - Display Variables

 68 of 93 Development Guide 1.1

Interface Objects - Display Variables

 69 of 93 Development Guide 1.1

8.3.4 Rotating Icon
Used to show an Icon that pivots around a given rotation center, based on the value of the VP. Typically used in
radial graphs, like speedometers and dials.

File
Address

PP
Address

Definition Length
(Bytes)

Description

0x00 0x5A05 2

0x02 PP 2 Parameter Pointer.
0xFFFF: Disables PP (no run-time modification).
0x0000 - 0x6FFF: Enables PP (run-time modification possible).

0x04 0x000C 2

0x06 0x00 VP 2 Variable Pointer.

0x08 0x01 IconId 1 Index of the Icon in the Icon Library that will be rotated (usually a dial
needle).

0x0A 0x02 Icon_Center_X 2 Center of rotation on the Icon. X coordinate.

0x0C 0x03 Icon_Center_Y 2 Center of rotation on the Icon. Y coordinate.

0x0E 0x04 Screen_Center_X 2 Center of rotation on the Screen. The center of rotation of the Icon is
placed in this point, and pivots around it. X coordinate.

0x10 0x05 Screen_Center_Y 2 Center of rotation on the Screen. The center of rotation of the Icon is
placed in this point, and pivots around it. Y coordinate.

0x12 0x06 Min_Value 2 Minimum value.

0x14 0x07 Max_Value 2 Maximum value.

0x16 0x08 Angle_Min 2 Minimum angle, associated to “Min_Value”. Given in 0.5° steps.
Range: [0,720] [0x000,0x2D0], which is equivalent to 0° to 360°.

0x18 0x09 Angle_Max 2 Maximum angle, associated to “Max_Value”. Given in 0.5° steps.
Range: [0,720] [0x000,0x2D0], which is equivalent to 0° to 360°.

0x1A 0x0A.H VP_Mode 1 Value Memory Size.

0x00: 16-bit Integer.
0x01: 8-bit Unsigned Integer in High Byte of the VP.
0x02: 8-bit Unsigned Integer in Low Byte of the VP.

0x1B 0x0A.L LibId 1 Index in the FLASH memory of the Icon Library to use.

0x1C 0x0B Transparency 1 0x00: Transparent background.
Other Values: Opaque background.

PP
Length:

12 VPs

Interface Objects - Display Variables

 70 of 93 Development Guide 1.1

Interface Objects - Display Variables

 71 of 93 Development Guide 1.1

8.3.5 Bitwise Icon
Used to show fixed and/or animated Icons, according to a bit flag value on the VP. The value of each bit
represents the state of a single Icon, and many Icons can be shown, in different states, based on the VPC.

Typically used to display several alarms at once, or to implement bar graphs.

File
Address

PP
Address

Definition Length
(Bytes)

Description

0x00 0x5A06 2

0x02 PP 2 Parameter Pointer.
0xFFFF: Disables PP (no run-time modification).
0x0000 - 0x6FFF: Enables PP (run-time modification possible).

0x04 0x000C 2

0x06 0x00 VP 2 Variable Pointer.

0x08 0x01 VP_Aux 2 Auxiliary Variable Pointer. 2 words. To match UnicView AD, should be
allocated right after VP.
High word: Reserved, stores animation status for bit 0.
Low word: Reserved, stores animation status for bit 1.

0x0A 0x02 Active_Bits 2 Indicates which bits are displayed.
0b1: Active bit.
0b0: Inactive bit.

0x0C 0x03.H Display_Mode 1 The following table describes what icons are shown when each bit value is
either 0 or 1.

Mode
Bit Value

0 1

0x00 Icon Start/Stop 0 Icon Start/Stop 1

0x01 Icon Start/Stop 0 None

0x02 Icon Start/Stop 0
Animation: Icon Start/Stop 1 ->

Icon End 1

0x03 None Icon Start/Stop 1

0x04 None
Animation: Icon Start/Stop 1 ->

Icon End 1

0x05
Animation:

Icon Start/Stop 0 ->
Icon End 0.

Icon Start/Stop 1

0x06
Animation:

Icon Start/Stop 0 ->
Icon End 0

None

0x07
Animation:

Icon Start/Stop 0 ->
Icon End 0

Animation: Icon Start/Stop 1 ->
Icon End 1

0x0D 0x03.L Alignment_Mode 1 Bit icons arranged mode.
0x00: Horizontal, no space reserved for inactive bits.
0x01: Vertical, no space reserved for inactive bits.
0x02: Horizontal, space reserved for inactive bits.
0x03: Vertical, space reserved for inactive bits.

0x0E 0X04.H Transparency 1 0x00: Transparent background.
Other Values: Opaque background.

0x0F 0x04.L LibId 1 Index in the FLASH memory of the Icon Library to use.

0x10 0x05 Icon_Start_Stop_0 2 Modes 0, 1, 2; Bit value = 0; Icon shown.
Modes 5, 6, 7; Bit value = 0: First icon in animation mode.

0x12 0x06 Icon_End_0 2 Modes 5, 6, 7; Bit value = 0: Last icon in animation mode.

0x14 0x07 Icon_Start_Stop_1 2 Modes 0, 3, 5; Bit value = 1; Icon shown.
Modes 2, 4, 7; Bit value = 1: First icon in animation mode.

0x16 0x08 Icon_End_1 2 Modes 2, 4, 7; Bit value = 1: Last icon in animation mode.

0x18 0x09 Coordinates 4 Top-left coordinates of the Icons to display: (Xi, Yi).

Interface Objects - Display Variables

 72 of 93 Development Guide 1.1

0x1C 0x0B Spacing 2 The size reserved for each Icon, in pixels.

0x1E 0x00.

PP
Length:

12 VPs

Caution Animated Icon uses 3 VPs. Make sure to reserve VPs accordingly.

Interface Objects - Display Variables

 73 of 93 Development Guide 1.1

8.3.6 Numeric Art
Works like a Numeric Display, using Icons instead of Fonts. Typically used when you need to display numeric
information that needs an anti-aliased look. It uses fixed-point integer values.

File
Address

PP
Address

Definition Length
(Bytes)

Description

0x00 0x5A03 2

0x02 PP 2 Parameter Pointer.
0xFFFF: Disables PP (no run-time modification).
0x0000 - 0x6FFF: Enables PP (run-time modification possible).

0x04 0x0007 2

0x06 0x00 VP 2 Variable Pointer.

0x08 0x01 Coordinates 4 Top-left coordinates of the Icons to display: (Xi, Yi).

0x0C 0x03 Icon_0 2 Icon corresponding to digit 0. The Icon Library must follow this indexing
order: [0123456789-.].

0x0E 0x04.H LibId 1 Index in the FLASH memory of the Icon Library to use.

0x0F 0x04.L Transparency 1 0x00: Transparent background.
Other Values: Opaque background.

0x10 0x05.H Integer_Digits 1 Number of digits to the left of the decimal separator.

0x11 0x05.L Decimal_Digits 1 Number of digits to the right of the decimal separator.

0x12 0x06.H VP_Mode 1 Value Memory Size.

0x00: 16-bit Integer.
0x01: 32-bit Integer.
0x02: 8-bit Unsigned Integer in High Byte of the VP.
0x03: 8-bit Unsigned Integer in Low Byte of the VP.
0x04: 64-bit Integer.
0x05: 16-bit Unsigned Integer.
0x06: 32-bit Unsigned Integer.

In 8-bit mode, uses the Low Byte in return value. In 1-bit mode, uses the
LSB.

0x13 0x06.L Alignment 1 0x00: Left- alignment
0x01: Right- alignment.

PP Length: 7 VPs

Caution The sum of Integer and Decimal digits should not exceed 20.

Interface Objects - Display Variables

 74 of 93 Development Guide 1.1

8.3.7 Numeric Display
Used to display numeric information. It uses fixed-point integer values.

File
Address

PP Address Definition Length
(Bytes)

Description

0x00 0x5A10 2

0x02 PP 2 Parameter Pointer.
0xFFFF: Disables PP (no run-time modification).
0x0000 - 0x6FFF: Enables PP (run-time modification possible).

0x04 0x000D 2

0x06 0x00 VP 2 Variable Pointer.

0x08 0x01 Coordinates 4 Top-left coordinates of the text to display: (Xi, Yi).

0x0C 0x03 Color 2 Text color.

0x0E 0x04.H LibId 1 Index in the FLASH memory of the Font to use.

0x0F 0x04.L Font_Width 1 Font width, in pixels. Range: [0x04,0xFF]

0x10 0x05.H Alignment 1 0x00: Right-alignment.
0x01: Left-alignment.
0x02: Center- alignment.

0x11 0x05.L Integer_Digits 1 Number of digits to the left of the decimal separator.

0x12 0x06.H Decimal_Digits 1 Number of digits to the right of the decimal separator.

0x13 0x06.L VP _Mode 1 Value Memory Size.

0x00: 16-bit Integer.
0x01: 32-bit Integer.
0x02: 8-bit Unsigned Integer in High Byte of the VP.
0x03: 8-bit Unsigned Integer in Low Byte of the VP.
0x04: 64-bit Integer.
0x05: 16-bit Unsigned Integer.
0x06: 32-bit Unsigned Integer.

In 8-bit mode, uses the Low Byte in return value. In 1-bit mode, uses the
LSB.

0x14 0x07.H Unit_Length 1 Length of text to append after the digits, in characters. Range: [0,11]

0x15 0x07.L Unit_Text 0 → 11 Text to append after the digits. ASCII code.

PP Length: 8 to 19 VPs

Caution The sum of Integer and Decimal digits should not exceed 20.

Interface Objects - Display Variables

 75 of 93 Development Guide 1.1

8.3.8 Text Display
Used to display textual information.

File
Address

PP
Address

Definition Length
(Bytes)

Description

0x00 0x5A11 2

0x02 PP 2 Parameter Pointer.
0xFFFF: Disables PP (no run-time modification).
0x0000 - 0x6FFF: Enables PP (run-time modification possible).

0x04 0x000D 2

0x06 0x00 VP 2 Variable Pointer.

0x08 0x01 Coordinates 4 Top-left coordinates of the text to display: (Xi, Yi).

0x0C 0x03 Color 2 Text color.

0x0E 0x04 Text_Area 8 Area where the text will be displayed: (Xi, Yi, Xf, Yf).

0x16 0x08 Max_Text_Length 2 Maximum text length, in bytes (characters). Range: [1,123].

0x18 0x09.H LibId0 1 Index in the FLASH memory of the Font to use, for encoding modes 0x01 -
0x04.

0x19 0x09.L LibId1 1 Index in the FLASH memory of the Font to use, for encoding modes 0x00
and 0x05, and other non-ASCII fonts for encoding modes 0x01 - 0x04.

0x1A 0x0A.H Font_Width 1 Font width, in pixels. Range: [0x04,0xFF]

0x1B 0x0A.L Font_Height 1 Font height, in pixels. Must be even.
In encoding modes 0x01 - 0x04, must be twice the Width.

0x1C 0x0B.H Spacing_Encoding 1 Character spacing mode is defined by bit 7:
0b0: Automatic spacing.
0b1: Fixed spacing.

Font encoding is defined by bits 6 to 0:
0x00: 8 bit.
0x01: GB2312.
0x02: GBK.
0x03: BIG5
0x04: SJIS
0x05: UNICODE.

0x1D 0x0B.L Character_Spacing 1 Spacing between characters, in pixels.

0x1E 0x0C.H Line_Spacing 1 Spacing between lines, in pixels.

0x1F 0x0C.L 0x00 fixed

PP
Length:

13 VPs

To indicate that a string is finished, a terminator character (0xFF or 0x00) must be appended to the data.

Interface Objects - Display Variables

 76 of 93 Development Guide 1.1

8.3.9 Image Animation
Used to create an animation of Screens. Can be implemented via Serial Communication as a series of Screen
jumps.

File Address PP Address Definition Length
(Bytes)

Description

0x00 0x5A04 2

0x02 PP 2 Parameter Pointer.
0xFFFF: Disables PP (no run-time modification).
0x0000 - 0x6FFF: Enables PP (run-time modification possible).

0x04 0x0004 2

0x06 0x00 0x00 2 0x00

0x08 0x01 First_Frame 2 PicId of the first animation frame.

0x0A 0x02 Last_Frame 2 PicId of the last animation frame.

0x0C 0x03.H Frame_Time 1 Time spent in each animation Screen. Range: [0x00,0xFF], in 8 ms steps.

PP Length: 4 VPs

Interface Objects - Display Variables

 77 of 93 Development Guide 1.1

8.3.10 Hex Display
Used to display numeric information in hexadecimal format, with optional digit separators.

File
Address

PP
Address

Definition Length
(Bytes)

Description

0x00 0x5A13 2

0x02 PP 2 Parameter Pointer.
0xFFFF: Disables PP (no run-time modification).
0x0000 - 0x6FFF: Enables PP (run-time modification possible).

0x04 0x000D 2

0x06 0x00 VP 2 Starting Variable Pointer of data string, data is encoded with BCD format.
The data will be displayed in HEX format when half-byte data is greater
than 0x9, e.g.:
0x32: display 32, 0xBF: display BF.

0x08 0x01 Coordinates 4 Top-left coordinates of the text to display: (Xi, Yi).

0x0C 0x03 Color 2 Text color.

0x0E 0x04.H Byte_Num 1 Byte numbers to be displayed, 0x01 - 0x0F.

0x0F 0x04.L LibId 1 Index in the FLASH memory of the Font to use.

0x10 0x05.H Font_Width 1 Font width, in pixels. Range: [0x04,0xFF]

0x11 0x05.L Separator_Format 0 → 15 Sequence of characters (ASCII) representing the separators for this Hex
Display. The current value (contained on VP) will be shown in
hexadecimal, and after each byte, a separator character is inserted.

Special characters: 0x00 (blank), 0x0D (new line).

Example: Current value in the 2 addresses starting at VP: 0x1234AABB.
Separator Format: 0x00200D (blank, space, new line).
What is shown on the LCM:
1234 AA
BB

PP
Length:

6 to 21
VPs

Interface Objects - Display Variables

 78 of 93 Development Guide 1.1

8.3.11 RTC Display
Used to display current date and/or time, in digital format. Uses the internal RTC.

File
Address

PP
Address

Definition Length
(Bytes)

Description

0x00 0x5A12 2

0x02 PP 2 Parameter Pointer.
0xFFFF: Disables PP (no run-time modification).
0x0000 - 0x6FFF: Enables PP (run-time modification possible).

0x04 0x000D 2

0x06 0x00 0x00 2 0x00

0x08 0x01 Coordinates 4 Top-left coordinates of the text to display: (Xi, Yi).

0x0C 0x03 Color 2 Text color.

0x0E 0x04.H LibId 1 Index in the FLASH memory of the Font to use.

0x0F 0x04.L Font_Width 1 Font width, in pixels. Range: [0x04,0xFF]

0x10 0x05 String_Code 0 → 16 Display format string. Use ASCII characters and the Field Codes on the
following table.
E.g.: Current time = 2012-05-02 12:00:00 Wednesday,
Y-M-D H: Q: S 0x00, will display “2012-05-02 12:00:00”.
M-D W H: Q 0x00, will display “05-02 WED 12:00”.

PP Length: 6 to 22
VPs

RTC Field Codes:

Description Field Code Range/Format Displayed

Year Y 2000-2099

Month M 01-12

Day D 01-31

Hour H 00-23

Minute Q 00-59

Second S 00-59

Date W SUN MON TUE WED THU FRI SAT

Coding end 0x00

Interface Objects - Display Variables

 79 of 93 Development Guide 1.1

8.3.12 Analog Clock
Used to display current time, in analog format (a radial clock). Uses the internal RTC.

File
Address

PP
Address

Definition Length
(Bytes)

Description

0x00 0x5A12 2

0x02 PP 2 Parameter Pointer.
0xFFFF: Disables PP (no run-time modification).
0x0000 - 0x6FFF: Enables PP (run-time modification possible).

0x04 0x000D 2

0x06 0x00 0x0001 2 0x0001

0x08 0x01 Screen_Center 4 Center of rotation on the Screen. The center of rotation of the Icon is
placed in this point, and pivots around it. (X, Y).

0x0C 0x03 Icon_Hour 2 Index of the Icon showing the Hour hand.
0xFFFF: none.

0x0E 0x04 Icon_Hour_Central 4 Center of rotation on the Hour Icon. (X, Y).

0x12 0x06 Icon_Minute 2 Index of the Icon showing the Minute hand.
0xFFFF: none.

0x14 0x07 Icon_Minute_Central 4 Center of rotation on the Minute Icon. (X, Y).

0x18 0x09 Icon_Second 2 Index of the Icon showing the Second hand.
0xFFFF: none.

0x1A 0x0A Icon_Second_Central 4 Center of rotation on the Second Icon. (X, Y).

0x1E 0x0C.H LibId 1 Index in the FLASH memory of the Icon Library to use.

0x1F 0x00 1 0x00

PP
Length:

13 VPs

Interface Objects - Display Variables

 80 of 93 Development Guide 1.1

8.3.13 Table Display
Used to display tabular text.

File
Address

PP
Address

Definition Length
(Bytes)

Description

0x00 0x5A22 2

0x02 PP 2 Parameter Pointer.
0xFFFF: Disables PP (no run-time modification).
0x0000 - 0x6FFF: Enables PP (run-time modification possible).

0x04 0x000C 2

0x06 0x00 VP 2 Variable Pointer.

0x08 0x01.H Column_Count 1 Number of columns. Range: [0x01,0xFF].

0x09 0x01.L Row_Count 1 Number of rows. Range: [0x01,0xFF].

0x0A 0x02.H First_Column 1 Column index (0 based) of the first column (left-most) to be shown.
Range: [0x00,0xFF].

0x0B 0x02.L First_Row 1 Row index (0 based) of the first row(top-most) to be shown.
Range: [0x00,0xFF].

0x0C 0x03.H Cell_Length 1 Cell Length, in words (number of characters = 2*[Cell Length]).

0x01 - 0x7F: Data length for all cell (2 to 254 characters).
0x00: Data starting from VP defines the length of each column.

0x0D 0x03.L Format 1 Character spacing mode is defined by bit 7:
0b0: Automatic spacing.
0b1: Fixed spacing.

Table content type is defined by bit 6:
0b0: Text.
0b1: First two VPs in each column data indicate the format. See the
next table for details.

Table border is defined by bit 5:
0b0: Show border.
0b1: Hide border.

Bit 4: 0x00

Font encoding is defined by bits 3 to 0:
0x00: 8 bit.
0x01: GB2312.
0x02: GBK.
0x03: BIG5
0x04: SJIS
0x05: UNICODE.

0x0E 0x04 Table_Area 8 Area where the table will be displayed: (Xi, Yi, Xf, Yf).

0x16 0x08 Border_Color 2 Border color.

0x18 0x09 Color 2 Text color.

0x1A 0x0A.H LibId0 1 Index in the FLASH memory of the Font to use, for encoding modes
0x01 - 0x04.

0x1B 0x0A.L LibId1 1 Index in the FLASH memory of the Font to use, for encoding modes
0x00 and 0x05, and non-ASCII fonts for encoding modes 0x01 - 0x04.

0x1C 0x0B.H Font_Width 1 Font width, in pixels. Range: [0x04,0xFF]

0x1D 0x0B.L Font_Height 1 Font height, in pixels. Must be even.
In encoding modes 0x01 - 0x04, must be twice the Width.

0x1E 0x0C.H Show_Column_Header 1 0x00: Show column header when “First_Row” != 0;
0x01: Show column header only when “First_Row” == 0;

0x1F 0x0C.L Show_Row_Header 1 0x00: Show row header when “First_Column” != 0;
0x01: Show row header only when “First_Column” == 0;

PP
Length:

13 VPs

Interface Objects - Display Variables

 81 of 93 Development Guide 1.1

The following table summarizes the content type custom formats. The indicated values must be written into the
first 2 VPs of each cell data.

Address Value Format Description

First VP, High Byte 0x00 16-bit Integer.

0x01 32-bit Integer.

0x02 8-bit Unsigned Integer in High Byte of the VP.

0x03 8-bit Unsigned Integer in Low Byte of the VP.

0x04 64-bit Integer.

0x05 16-bit Unsigned Integer.

0x06 32-bit Unsigned Integer.

0x10 Time Format, hh:mm:ss, BCD.

0x11 Time Format, hh-mm-ss, BCD.

0x12 Time Format, YYYY-MM-DD hh:mm:ss, BCD

0xFF Text

First VP, Low Byte [0x00,0xFF] In modes 0x00 - 0x06:
High nibble is the number of integer digits.
Low nibble is the number of decimal digits.

In modes 0x10 - 0x11:
BCD length, in bytes.

Other modes:
Not used.

Second VP [0x0000,0xFFFF] Text Color

Info You can use double terminator characters (0xFFFF) to indicate the end of text in a cell.

If “Cell_Length” is 0, the cell length is specified for each column. Starting from the High Byte of the VP, each byte
indicates the Length of each column. In this case, the actual data starts from VP + (”Column Count”/2) (rounded
up).

In the following examples, consider a table with VP = 0x0000, and 3 columns of data.

• Fixed cell length:

Interface Objects - Display Variables

 82 of 93 Development Guide 1.1

• Variable cell length (“Cell Length” == 0x00):

When using data type custom formats, you must reserve at least 3 VPs for each cell, because custom formats

require the first 2 VPs of each cell.

• Fixed cell length:

• Variable cell length (“Cell Length” == 0x00):

Interface Objects - Display Variables

 83 of 93 Development Guide 1.1

8.3.14 Trend Curve Display
Used to plot line graphs.

File Address PP Address Definition Length
(Bytes)

Description

0x00 0x5A20 2

0x02 PP 2 Parameter Pointer.
0xFFFF: Disables PP (no run-time modification).
0x0000 - 0x6FFF: Enables PP (run-time modification possible).

0x04 0x000A 2

0x06 0x00 0x0000 2 0x0000

0x08 0x01 Curve_Area 8 Area where the trend curve will be plotted: (Xi, Yi, Xf, Yf).

0x10 0x05 Vertical_Origin 2 Origin point of the vertical axis.

0x12 0x06 Vertical_Origin_Value 2 Value associated to the vertical axis origin.

0x14 0x07 Color 2 Color of the plot.

0x16 0x08 Vertical_Zoom 2 Vertical Zoom. Range: [0x0000,0x7FFF].

0x18 0x09.H Channel 1 Channel of the curve. Range: [0x00, 0x07].

0x19 0x09.L Horizontal_Increment 1 Horizontal Increment. Range: [0x01,0xFF].

PP Length: 10 VPs

“Vertical_Zoom” is calculated by this formula:

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙_𝑍𝑜𝑜𝑚 =
(𝑌𝑓 − 𝑌𝑖) ∗ 256

(𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛)

Where:

• Yf = Bottom Y coordinate of the “Curve_Area”.

• Yi = Top Y coordinate of the “Curve_Area”.

• Vmax = Maximum value on the plot.

• Vmin = Minimum value on the plot.

Info Refer to section “4.4.5 - Trend Curve Buffer Space” for more information.

Interface Objects - Display Variables

 84 of 93 Development Guide 1.1

8.3.15 Graphic Primitives Display (GPD)
Used to access many graphic manipulation functions, like copy/pasting and shape drawing.

File
Address

PP
Address

Definition Length
(Bytes)

Description

0x00 0x5A21 2

0x02 PP 2 Parameter Pointer.
0xFFFF: Disables PP (no run-time modification).
0x0000 - 0x6FFF: Enables PP (run-time modification possible).

0x04 0x0008 2

0x06 0x00 VP 2 Variable Pointer.

0x08 0x01 Text_Area 8 Area where graphics are displayed: (Xi, Yi, Xf, Yf).
Only valid for Commands 0x0001 - 0x0005, 0x0009 - 0x000B

0x10 0x05.H Enable_Dash_Pattern 1 Enables or disables the dashed line pattern for Commands 0x0002,
0x0003, 0x0009, 0x000A.

0x5A: The drawn lines are dashed.
Other Values: Full lines are drawn.

0x11 0x05.L Dash_Pattern 4 Dash pattern format. The pattern has 4 segments (bytes):
Byte 1: Length of the first opaque segment.
Byte 2: Length of the first transparent segment.
Byte 3: Length of the second opaque segment.
Byte 4: Length of the second transparent segment.

0x15 13 0x00

PP Length: 6 VPs

Examples of dash patterns:

Interface Objects - Display Variables

 85 of 93 Development Guide 1.1

The graphic primitives available (also called Functions) are used by writing their Function Code and Arguments
in the VP of the Graphic Primitives Display. The first address (VP) holds the Function Code, which identifies the
Function. The second address (VP + 1) indicates how many times this Function should be displayed. From the
third address (VP + 2) and onwards, the information on how to draw these Functions is stored.

Address Definition Description

VP Function Code
(FNC)

Identifies the desired Function.

VP + 1 Function Count Number of Functions displayed. Only works with the same FNC. For FNC 0x0002, it’s the number of
vertices - 1.

VP + 2 Function Data Function arguments, like coordinates, color, etc.

For example, to perform a Copy and Paste Function:

All Functions have a Control Byte, which is used to finish the displaying of graphics, or to skip one specific
Function. To finish or skip Functions, write the corresponding value to their Control Bytes:

• Finish Display (0xFF): No further Functions on the current GPD are displayed.

• Skip Function (0xFE): Skips only one Function on the current GPD.

The following table summarizes all available Functions.

Interface Objects - Display Variables

 86 of 93 Development Guide 1.1

FNC Function

Data

Relative
Address

Length
(word)

Definition Description

0x0001 Dot
0x00 2 (X,Y) Dot coordinates. High byte of X coordinate is the Control Byte.

0x02 1 Color Dot color.

0x0002 Line

0x00 1 Color Line color.

0x01 2 (X,Y)0 Coordinates of Vertex 0. High byte of X coordinate is the Control Byte.

0x03 2 (X,Y)1 Coordinates of Vertex 1. High byte of X coordinate is the Control Byte.

0x01+2
*n

2 (X,Y)n Coordinates of Vertex n. High byte of X coordinate is the Control Byte.

0x0003 Rectangle

0x00 2 (X,Y)i Top-left coordinates. High byte of X coordinate is the Control Byte.

0x02 2 (X,Y)f Bottom-right coordinates.

0x04 1 Color Color of the rectangle.

0x0004 Rectangle Area

0x00 2 (X,Y)i Top-left coordinates. High byte of X coordinate is the Control Byte.

0x02 2 (X,Y)f Bottom-right coordinates.

0x04 1 Color Fill color.

0x0005 Circle

0x00 2 (X,Y) Coordinates of the center of the circle. High byte of X coordinate is the Control Byte.

0x02 1 Radius Radius of the circle.

0x03 1 Color Circle color.

0x0006 Copy and Paste

0x00 1 PicId Index of the Screen to be copied. High byte of X coordinate is the Control Byte.

0x01 2 (X,Y)i Top-left coordinates of the copy area.

0x03 2 (X,Y)f Bottom-right coordinates of the copy area.

0x05 2 (X,Y) Paste position on current Screen, Top-left coordinates.

0x**07 Icon
0x00 2 (X,Y) Top-left coordinates where the Icon will be displayed. High byte of X coordinate is the Control Byte.

0x02 1 IconId Index of the Icon in the Icon Library that will be displayed. High byte of FNC specifies the LibId. Transparent background.

0x0008 Color Fill
0x00 2 (X,Y) First pixel to paint. All adjacent pixels with the same color will be also painted. High byte of X coordinate is the Control Byte.

0x02 1 Color Fill color.

0x0009 Spectrum Graph

0x00 1 Color

Connects (X, Yi), (X, Yf) with a line segment. High byte of X coordinate is the Control Byte.
0x01 1 X

0x02 1 Yi

0x03 1 Yf

Interface Objects - Display Variables

 87 of 93 Development Guide 1.1

0x000A Segment

0x00 1 Color

Connects (Xi, Yi), (Xf, Yf) with line segment. High byte of Xi coordinate is the Control Byte.

0x01 1 Xi

0x02 1 Yi

0x03 1 Xf

0x04 1 Yf

0x000B Arc

0x00 1 Color Arc color.

0x01 2 (X,Y) Coordinates of the center of the arc. High byte of X coordinate is the Control Byte.

0x03 1 Radius Radius of the arc.

0x04 1
Initial
Angle

Initial angle of the arc. Range: [0,720], in 0.5° increments.

0x05 1 Final Angle Final angle of the arc. Range: [0,720], in 0.5° increments.

0x000C Character

0x00 1 Color Character color.

0x01 2 (X,Y)0 Top-left coordinates of the character. High byte of X coordinate is the Control Byte.

0x03.H 0.5 LibId Index in the FLASH memory of the Font to use.

0x03.L 0.5 Encoding Font encoding: 0x00: 8 bit. 0x01: GB2312. 0x02: GBK. 0x03: BIG5 0x04: SJIS 0x05: UNICODE.

0x04.H 0.5 Font Width Font width, in pixels. Range: [0x04,0xFF]

0x04.L 0.5
Font
Height

Font height, in pixels.

0x05 1 Text0 Character code. Only valid on high byte of 8-bit encoding. For 0x01-0x04 encoding and ASCII data, DefaultFont will be used.

0x000D
Color Inverting

Rectangle

0x00 2 (X,Y)i Top-left coordinates. High byte of X coordinate is the Control Byte.

0x02 2 (X,Y)f Bottom-right coordinates.

0x04 1
Inverting
Bits

Indicates the bits which will inverse the color. 0x0000: No color inversion. 0xFFFF: all color bits are inversed.

0x000E
Binary Color

Graph

0x00 2 (X,Y)i Top-left coordinates of the graph. High byte of X coordinate is the Control Byte.

0x02 1 Width Width of the graph, in pixels.

0x03 1 Height Height of the graph, in pixels.

0x04 1 Color1 Color associated to value 0b1.

0x05 1 Color0 Color associated to value 0b0. If Color0 == Color1, then Color0 will be transparent.

0x06 ?
Binary
Data

Binary data to display. Data is read MSB to LSB, drawing the pixels left to right. A set bit (0b1) is painted with Color1, and a clear bit
(0b0) is painted with Color0.

0x000F Bitmap

0x00 2 (X,Y)i Top-left coordinates of the bitmap. High byte of X coordinate is the Control Byte.

0x02 1 Width Bitmap width, in pixels. Bitmap size must not exceed 28665 pixels.

0x03 1 Height Bitmap height in pixels. Bitmap size must not exceed 28665 pixels.

0x04 ? Color Data Color data to display. Each pixel occupies 1 word (MSB aligned, RGB565 format).

0x0010 Zoom and Paste

0x00 2 (X,Y) Paste position on current Screen, Top-left coordinates. High byte of X coordinate is the Control Byte.

0x02 2 (X,Y)i Top-left coordinates of the zoom area.

0x04 2 (X,Y)f Bottom-right coordinates of the zoom area.

Interface Objects - Display Variables

 88 of 93 Development Guide 1.1

8.3.16 QR Code Display
Used to display QR Codes generated from the value of the VP.

File Address PP Address Definition Length
(Bytes)

Description

0x00 0x5A25 2

0x02 PP 2 Parameter Pointer.
0xFFFF: Disables PP (no run-time modification).
0x0000 - 0x6FFF: Enables PP (run-time modification possible).

0x04 0x0004 2

0x06 0x00 VP 2 Variable Pointer.

0x08 0x01 Coordinates 4 Top-left coordinates of the Icons to display: (Xi, Yi).

0x0C 0x03 Pixel_Size 2 QR Pixel size, in pixels. It’s the size of the smallest square on a QR Code.
Range: [0x01,0x07].

0x0B-0x1F 0x05.L Reserved 18 0x00

PP Length: 6 VPs

The QR Code automatically reads and updates the data starting from its VP. To identify the end of the text data,
append a double terminator (0x0000 or 0xFFFF). Data range: 0 to 458 bytes.

The size of the QR Code is set according to the data length:

• Up to 154 bytes: 45x45 QR pixels.

• Up to 458 bytes: 73x73 QR pixels.

Info QR Code needs the “12_QR_CODE.bin” file to work normally.

AD Assembly - Display Variables

 89 of 93 Development Guide 1.1

9 AD Assembly
AD Assembly is an upcoming feature, not currently supported. All notes about AD Assembly or OS are only for
reference.

Modbus - Master

 90 of 93 Development Guide 1.1

10 Modbus
There are special AD firmware versions that can use Modbus RTU as their communication protocol. When using
Modbus Protocol, the standard AD Protocol is disabled.

Info When using Modbus Protocol, the standard AD Protocol is disabled. Project Download
to LCM via Serial Communication is also disabled.

There are two separate firmware versions that support Modbus protocol:

• Modbus RTU Master

• Modbus RTU Slave

10.1 Master
In this firmware version, the LCM can operate as a Master device in a Modbus communication bus. The following
table shows the supported Modbus Functions.

Function Code Function Name Data length (bytes)

0x01 Read Coils <No. of Coils>/8 (rounded up)

0x02 Read Discrete Inputs <No. of Inputs>/8 (rounded up)

0x03 Read Multiple Holding
Registers

<No. of Registers>*2

0x04 Read Input Registers <No. of Registers>*2

0x05 Write Single Coil 2

0x06 Write Single Holding Register 2

0x07 Read Exception Status 1

0x0F Write Multiple Coils <No. of Coils>

0x10 Write Multiple Holding
Registers

<No. of Registers>*2

0x11 Report Slave ID 1

In this mode, there are some differences in how the mapping of RAM address should be done:

1. Modbus Variable Range

You must designate a certain VP range as Modbus Variable Range, which is an address interval that can be
accessed by the Modbus Protocol.

VPs in this range can be read and written by the Modbus Functions. For example, you may designate the range
[0x0100,0x4000] as Modbus Variable Range.

Modbus - Master

 91 of 93 Development Guide 1.1

2. General Settings and Function Settings

The RAM addresses from 0x5000 to 0x6FFF are used as configuration data for the Modbus protocol.

VPs 0x5000 to 0x5007 store the General Settings:

Address Definition Value Read
Write

0x5000 Enable/Disable
Modbus Protocol

0x5AA5 = Enables Modbus Protocol.
Other Values = Disable Modbus Protocol.

W

0x5001.H Save Modbus
Settings

0x5A = Saves Modbus General and Function Settings in the RAM to the LCM's RAM
Initialization memory.

W

0x5001.L Load Modbus
Settings

0x5A = Loads Modbus General and Function Settings from the LCM's RAM
Initialization memory to the RAM.

W

0x5002 Serial Port Baud
Rate

Baud Rate, in Fixed-Point format (xxx.x kbps). Maximum: 999.9 kbps. Example:
0x0480 = 115.2 kbps = 115200 bps

R/W

0x5003.H Serial Port Settings 0x00 = 8N1
0x01 = 8E1
0x02 = 801
0x03 = 8N2

R/W

0x5003.L Undefined 0x00 -

0x5004.H Save Modbus
Variable Range

0x5A = Saves the data in the Modbus Variable Range to the LCM's RAM Initialization
memory.

W

0x5004.L Load Modbus
Variable Range

0x5A = Loads the data from the LCM's RAM Initialization memory into the Modbus
Variable Range.

W

0x5005.H Modbus Variable
Range Definition
Start

High byte of the fist VP on the Modbus Variable Range. The low byte is fixed to
0x00.

R/W

0x5005.L Modbus Variable
Range Definition
End

High byte of the last VP on the Modbus Variable Range. The low byte is fixed to
0x00.

R/W

0x5006 Undefined 0x0000 -

0x5007 Undefined 0x0000 -

VPs 0x5008 to 0x6FFF store the Function
Settings. Each Function occupies 8 VPs, and is
totally independent from other Functions.

A Function describes a single Modbus
Command. There are 1023 available Functions,
and you can enable or disable them at any
order.

0x5008

0x5009

0x500A

0x500B

0x500C

0x500D

0x500E

0x500F

0x5008 + n*8

0x5009 + n*8

0x500A + n*8

0x500B + n*8

0x500C + n*8

0x500D + n*8

0x500E + n*8

0x500F + n*8

0x6FF8

0x6FF9

0x6FFA

0x6FFB

0x6FFC

0x6FFD

0x6FFE

0x6FFF

Fu
n

ct
io

n
 1

0
2

2
Fu

n
ct

io
n

 1
Fu

cn
ti

o
n

 n

Modbus - Slave

 92 of 93 Development Guide 1.1

The following table shows the parameter mapping of the first Modbus Function.

Address Definition Value Read
Write

0x5008.H Enable/Disable
Function

0x5A = Enables this Function, Other Values = Disables this Function. R/W

0x5008.L Modbus Slave ID Slave ID of the target device. R/W

0x5009.H Modbus Function
Code

Function Code of this Function. R/W

0x5009.L Data Length Length of the Modbus data. R/W

0x500A Response Timeout The period, from the beginning of the transmission, within which the Slave Device
must answer this Function, in ms. Maximum: 9999 ms.

R/W

0x500B -
0x500C

Sending Mode Two words that control when this Function is sent.
0x0000:**** = Sends this Function continuously. The second byte doesn't matter.
0x0001:PicId = Sends this Function continuously, only when the current Screen
matches the PicId defined in the second byte.
0x0002:VP = Writing 0x5A in the low byte of the VP defined in the second byte
sends this Function once. The low byte of the VP is automatically cleared.

R/W

0x500D Modbus Variable
Address

Indicates the VP that contains data to be sent, or receives the response data from
the Slave Device.
If this value is 0xFF##, the received data will be written in the Trend Curve Buffer.
"##" defines the channel.

R/W

0x500E Slave Device
Address

Indicates the target address on the Slave Device. R/W

0x500F.H Function Response
Status

Indicates the status of the last time this Function was sent. 0x00 = Failure, 0xFF =
Success.

R

0x500F.L Undefined 0x00 -

10.2 Slave
In this firmware version, the LCM can operate as a Slave device in a Modbus communication bus. The following
table shows the supported Modbus Functions.

Function Code Function Name

0x03 Read VPs

0x04 Read Registers

0x0F Write Registers

0x10 Write VPs

0x10 Write Trend Curve Buffer

In Modbus Slave mode, the Frame Header Configuration Register holds two settings:

• R3: Slave ID assigned to the LCM.

• RA: Serial Port packet settings: 0x00 = 8N1, 0x01 = 8E1, 0x02 = 8O1, 0x8N2.

Modbus - Slave

 93 of 93 Development Guide 1.1

Examples:

Function
Code

Function Name Commands Description

0x03 Read VPs Tx: 5A 03 00 00 00 02 C9 20
Rx: 5A 03 04 00 00 00 00 10 F6

Read 2 VPs, starting from
0x0000.

0x04 Read Registers Tx: 5A 04 00 00 00 02 7C E0
Rx: 5A 04 04 71 40 00 00 0B A9

Read 4 Registers, starting from
0x00.

0x0F Write Registers Tx: 5A 0F 00 03 00 00 02 00 01 A8 20
Rx: 5A 0F 00 03 00 00 A8 E0

Write 2 Registers, starting
from 0x03.

0x10 Write VPs Tx: 5A 10 00 00 00 02 04 31 32 33 34 6D
9E
Rx: 5A 10 00 00 00 02 4C E3

Write 2 VPs, starting from
0x0000.

0x10 Write Trend Curve
Buffer

Tx: 5A 10 FF 01 00 02 04 3F FE 20 00 27 96
Rx: 5A 10 FF 01 00 02 2D 37

Write 2 values in into Channel
0 of Trend Curve Buffer.

It’s the same as writing VPs,
but the high byte of the
address (0xFF) indicates that
this is a Trend Curve
operation, and the low byte is
the channels to write to.

